

Co-funded by the Erasmus+ Programme of the European Union

International Master of Science on Cyber Physical Systems

Gap analysis: Identify any shortcomings of courses or expertise in all partners and make the necessary plan to compensate these shortcomings.

D1.3

Project Acronym	MS@CPS	Project Number	598750-ЕРР-1-2018-1-DE-ЕРРКА2- СВНЕ-ЈР
Date	2019-11-15	Deliverable No.	1.3
Contact Person	Rashid Jayousi	Organisation	AQU
Phone	+970 592 907 989	E-Mail	rjayousi@staff.alquds.edu
Version	3.0	Confidentiality level	Public

Version History

Version No.	Date	Change	Editor(s)
0	1/10/2019	Initial outline	Isam Ishaq, Rashid Jayousi, Salah Odeh
1	20/10/2019	Input from working groups integrated	Ezzaldeen Edwan, Ala' Khalifah, Nadia Aloui. Zaid Alhalhouli,
2		Intermediate version	
3		Final draft for QC	
4		Final version for delivery to EC, integrated	

Contributors

Name	Organization
Isam Ishaq	AQU
Rashid Jayousi	AQU
Salah Odeh	AQU
Ala' Khalifeh	GJU
Ezzaldeen Edwan	РТС
Nadia Aloui	CU
Zaid Alhalhouli	TTU
Bassam Bouaziz	USF

Disclaimer

This project has been funded with support from the European Commission. This publication reflects the views only of the author(s), and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Table of Contents

Vers	Version History 2						
Con	Contributors						
Disc	Disclaimer 2						
Tabl	le of C	ontents					
1.	Intro	duction4					
1.	.1	Scope4					
1.	.2	Relation to deliverables 4					
1.	.3	Relation to work packages 4					
1.	.4	Terminology 4					
2.	Meth	odology					
3.	Surve	y Results					
3.	.1	Dependability (Safety, Reliability and Availability)6					
3.	.2	Security and Privacy					
3.	.3	Cloud Computing					
3.	.4	Control systems7					
3.	.5	Embedded Systems7					
3.	.6	Real time systems					
3.	.7	Sensors and actuators					
3.	.8	Wireless Communication Networks 8					
3.	.9	Distributed Systems					
3.	.10	Entrepreneurship					
3.	.11	Distributed Control Systems					
3.	.12	Human-Computer Interaction9					
3.	.13	Mobile and Ubiquitous Computing9					
3.	.14	Industrial Communication Protocols 10					
3.	.15	Internet of Things 10					
3.	.16	Low power networks					
3.	.17	Mobile Communication Networks					
3.	.18	Network Optimization					
3.	.19	Machine Learning					
4.	Findi	ngs12					
5.	Conc	usion13					
6.	5. Appendix I						

Introduction

As a result of the work done in D1.2 and in the workshop held at GJU in June, the core modules were identified and consequently the learning and objectives were decided upon. A survey amongst partner countries was conducted to identify the needed expertise and shortcomings of courses in all partners and make the necessary plan to compensate these shortcomings. This, combined with the previously conducted industrial workshops, is important to ensure the learning outcomes of the designed courses meet the national market and ICT sector needs. A report on needed key competencies and required skills within the national scope of partner countries is presented in this deliverable.

1.1 Scope

The scope of this deliverable is the universities in partner countries. This deliverable explores the various capacity building needed for the implementation of the CPS program in partner countries. This will help to identify the necessary training workshops to be conducted at later stages.

1.2 Relation to deliverables

This deliverable will act as the initial phase to identify topics and training needs in the following work packages.

1.3 Relation to work packages

This deliverable will act as a milestone for WP2 that is concerned in the development of the courses program structure and modules. This deliverable will help in the design and development of case studies and put them into action by working through the cases whether inside of the companies or in a simulated work environment.

1.4 Terminology

CPS: Cyber Physical System

Modules/Courses: These two words are used interchangeably to indicate a unit of the program to be implemented.

Partner Countries: Countries where the program to be implemented (Palestine, Tunisia, Jordan)

Program Countries: EU partners (Germany, Sweden, and UK)

Program: The master program (CPS) to be implemented

1. Methodology

In order to identify the needed expertise and shortcomings of courses to be implemented in partner countries, a survey is used for this purpose. This survey is presented in Appendix 1. The surveys are available in the repository.

The survey contains a list of the courses as well columns for the needed capacities and equipment needed for each partner country.

After the surveys were filed it was analyzed and summarized as can be seen in the next section.

2. Survey Results

Image 1 shows a snap shot of part of the survey results, the needed capacities and will be discussed in more details in the conclusion section.

The detailed table can be found in the following link:

https://erasmus_mscps.teams.uni-

siegen.de/workpackages/wp1/_layouts/15/start.aspx#/SitePages/Home.aspx?RootFolder=%2Fworkp ackages%2Fwp1%2FShared%20Documents%2FDeliverables&FolderCTID=0x012000A12A81137E8145 40BAEEBC3C93717EDA&View=%7BB612AD93%2D4197%2D4AB0%2D8384%2D538A493F9F0B%7D

This in the project repository under the documents section of the sub directory Workpackage 1.

	PTC			GJU		TTU		USF			G		AQU							
"	Course Th	t Learning Outcomes	Level of Expertise in (1 - 10)	Needad Expertise	Equipment needed to teach this course	Level of Expertise in (1 - 10)	Needed Expertise	Equipment needed to teach this course	Level of Expertise in (1 - 10)	Needed Expertise	Equipment needed to teach this course	Level of Expertise in (1 - 10)	Needed Expertise	Equipment needed to teach this course	Level of Expertise in (1 - 10)	Needed Expertise	Equipment needed to teach this course	Level of Expertise in (1 - 10)	Needad Expertise	Equipment needed to teach this course
1	Dəpəndəki y (Sality, Relability and A valiability	Suburbs are delays indexes of a superstantial of USs separability in a suburbs region of USs separability and a suburbs region of USs separability and a suburbs region of USs suburbs region of	8	The model superior for PTC and course with a result research to be property with a result research to be proposition of CPTs and protein lands in drageness of CPTs: a fash submark, a fash submark, a fash submark, a fash submark, a fash submark, a fash submark, b	Malah suhesa he adyas a' an angeng satagan fapadah CTZ	5	GJU has the expertise anoted a such this course	FFGA kin, Microcomulter, ambeddal system kin	7	 There is a nord fit tuning country is for tuning and tunin for description and handling such and and handling such are fault such as fault such	- Fash diagonis techno for MatLab - Fash datectore an aladore webbeen fo MatLab		Advances and term is dependently of CP and protein hards-on opperators Solety, Solety, Relability and, Avalability Solety of the makers	Toolbears any mole Toolbears any mole Simulation dependibility		PHD is CPS, is Compet	 In teach new CFG courses and built CFG programs, aniversities will need to develop CFG course material and to provide the meessary laboratory approximation of laboratory approximation of laboratory approximation of laboratory approximation of laboratory approximation of laboratory approximation of a networks, and period in comparation with industry Training Performs 	2	Staff Training	Matiab toolhesus .

Image 1: A snap shot of part of the survey results

The survey was basically a table with the columns shown in Table 1 :

#	Course Title	Learning Outcomes	Level of Expertise in your institute (1-10)	Needed Expertise	Equipment needed to teach this course
---	-----------------	----------------------	---	---------------------	---------------------------------------

Each row was dedicated to a course and the learning outcomes of the course listed in the adjacent cell in the table. Partners were asked to answer the following questions in the indicated cells:

- Level of Expertise in your institute
- Needed Expertise (1 10)
- Equipment needed to teach this course

The survey was prepared for the following courses with the given learning outcomes:

2.1 Dependability (Safety, Reliability and Availability)

- 1. Students are able to understand the requirements of CPSs dependability in terms of safety, reliability and availability.
- 2. Students are able to describe the terminology and concepts used in specification, design, implementation, operation and evaluation of dependable CPSs.
- 3. Students are able to identify and analyze the factors that influences hardware and software failure processes in CPSs environment.
- 4. Students are able to describe and use the common practices, mechanisms and architectures to achieve faults tolerant, survivability and resilience in CPSs.
- 5. Students are able to evaluate and implement the dependability attributes of CPSs (safety, reliability and availability) in order to protect humans and an organization's assets.
- 6. Students are able to predict the hardware and software failure rates and their impact on the CPSs behavior.

2.2 Security and Privacy

- 1. Students can identify major types of threats, risks, attacks and vulnerabilities of information, application, and network security and privacy in Cyber Physical System environments and develop a security model to prevent, detect, and recover from them.
- 2. Students are able to understand and examine how the major security tools, techniques, and approaches such as access control management, firewalls, anti-virus software, intrusion prevention systems, proper backups and restores management systems, and proper secure protocols work in detail for testing, monitoring, tracking and auditing of security threats and vulnerabilities of Cyber Physical Systems and how the security tools can be deployed in practice taking into account associated strengths and weaknesses
- 3. Students can demonstrate ability to independently select and exercise the appropriate practices and technologies necessary to solve concrete problems in cyber and information security related to confidentiality (cryptographic solutions), integrity (authentication such as biometric), availability (for example, intrusion detection solutions), and privacy protection in their homes and professional environments.
- 4. Students are able to design and develop a security architecture for Cyber Physical Systems to ensure service continuity and reliability
- 5. Students are able to design operational security and privacy policies, strategies, and standards and practices for Cyber Physical Systems and recognize the role of management in enforcing security and privacy policies, standards and practices.
- 6. Students can demonstrate capabilities to apply the security and privacy knowledge in new areas within Cyber Physical Systems, in particular cloud computer security, security on the Internet of Things (IoT), and security of blockchain technology applications.
- 7. Student can describe and compare the common cryptographic encryption and decryption algorithms and the tools to ensure data integrity such as hashing, symmetric and asymmetric encryption, certificates, and methods of implementing cryptography.
- 8. Students are able to systematically and independently solve complex problems of research and development in the field of security and privacy of Cyber Physical Systems by analyzing, formulating sub-tasks, and proposing and implementing innovative solutions.
- 9. Students are able to identify and assess security and privacy risks in Cyber Physical System environments to mitigate, avoid, and transfer these risks.

10. Students are able to understand the data attributes such as confidentiality, possession or control, integrity, authenticity, availability, and utility, any of which can make it vulnerable to attack.

2.3 Cloud Computing

- 1. Describe fundamental concepts of cloud computing and differentiate between service and deployment models of cloud computing.
- 2. Illustrate fundamental concepts of cloud storage and compare different types of cloud file systems and databases.
- 3. Examine cloud programming models and apply them to solve problems on the cloud.
- 4. Discuss resource virtualization and their role in enabling the cloud computing model.
- 5. Assess the performance, scalability, and availability of the underlying cloud technologies.
- 6. Identify security and privacy issues in cloud computing.
- 7. Deploy applications over commercial cloud computing infrastructures such as Amazon Web Services (AWS), Windows Azure, and Google AppEngine.

2.4 Control systems

- 1. understand the core principles behind CPS. A solid understanding of these core principles is important for anyone who wants to integrate cyber and physical components
- 2. develop models and controls. In order to understand, design, and analyze CPS, it is important to be able to develop models for the various relevant aspects of a CPS design and to design controllers for the intended functionalities based on appropriate specifications
- 3. Identify the relevant dynamical aspects. Identify which types of phenomena of a CPS have a relevant influence for the purpose of understanding a particular property of a particular system.
- 4. Computational Thinking.
 - identify safety specifications and critical properties
 - understand abstraction in system designs
 - express pre- and post-conditions and invariants for CPS models
 - Developing correct CPS designs
 - use formal methods tools for CPS
- 5. CPS Skills.
 - understand the semantics of a CPS model
 - develop an intuition for operational effects
 - Understand opportunities and challenges in CPS and verification.

2.5 Embedded Systems

- 1. Demonstrate knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it.
- 2. Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software.
- 3. Design embedded systems based on microprocessor.
- 4. Demonstrate knowledge and understanding of Hardware/Software co-design techniques for microprocessor-based embedded systems, apply techniques in design problems.

- 5. Program microprocessors in C using Integrated Development Environments.
- 6. From an abstract description design and implement a small but typical embedded timeordered application for one emulated target machine

2.6 Real time systems

- 1. Understanding principles of embedded systems design; be aware of architectures and behaviors of embedded systems.
- 2. Specify needs to create a real-time system and where real-time requirements are needed
- 3. Design an application with real-time constraints.
- 4. Solve scheduling problems and apply them in real time applications in industry
- 5. Discover the usual methods for Real Time Specification. SADT, SART, and will focus on the UML specification

2.7 Sensors and actuators

- 1. Explain fundamental physical and technical base of sensors and actuators,
- 2. Develop an understanding of measurement principles, signal conditioning and data acquisition systems.
- 3. Develop systematic techniques for specifying transducers best suited to a range of applications.
- 4. Understand the design concepts and operation of a broad range of actuator devices.
- 5. Give in depth consideration of the performance envelopes and basis of selection of different actuator and microactuator types.

2.8 Wireless Communication Networks

- 1. Summarize and describe the properties, characteristics and design different types of Communication Networks, Protocols and TCP/IP Suite.
- 2. Build a deep understanding for Wireless Channel and Signal Encoding Techniques in terms of Antennas, Spectrum Considerations, Line-Of-Sight Transmissions and Signal Encoding Criteria.
- 3. Explain and Summarize the Orthogonal Frequency Division Multiplexing (OFDM) and the types of Spread Spectrum.
- 4. Apply knowledge of Coding and Error Control in order to compare error recovery processes among different types of codes.
- 5. Explain and describe the Architecture, Services, Access Control and Physical Layers of IEEE 802 standards for the Wireless LAN (WLAN) and Bluetooth Technologies.
- 6. Explain, describe and summarize the Wireless Mobile Networks and Long Range Communication Networks such as Satellite Networks and WiMAX technologies and their related standards.

2.9 Distributed Systems

- 1. Summarize and describe general properties, characteristics, design and different types of distributed systems.
- 2. Explain distributed architectures and processes in an industrial enterprise.
- 3. Explaining the rules communicating processes and data transmissions in distributed systems.
- 4. Describe how processes can synchronize and coordinate their actions.
- 5. Apply appropriate data replication methods to improve reliability and performance of distributed systems.
- 6. Use appropriate techniques in order achieve fault tolerance and recovery process.

2.10 Entrepreneurship

- 1. learn how to think on ideas that have business, marketing values and solves a problem in an efficient and distinguished way.
- 2. Define the target market, competitors, the competitive advantage, and learn how to conduct a market research study and analysis
- 3. Learn how to build a successful team and identify the needed resources
- 4. Learn the different business models that can be used to monetize the proposed idea
- 5. Know how market the business idea and reach the customers
- 6. Learn different methodologies and mechanisms used to raise funding
- 7. How to write a successful business plan.

The following expertise is needed to deliver the course efficient:

- Business development
- Marketing skills
- Basic financial knowledge
- Entrepreneurship practical experience is preferred

No special hardware is needed for this course.

2.11 Distributed Control Systems

- 1. Describe sensors, instrumentation, and process control as their relation to DCSs.
- 2. Know DCS organization and operation
- 3. Understand networking, HMI, and alarm features of DCSs
- 4. Understand Issues and procedures to perform DCS maintenance and troubleshooting
- 5. Compare and implement advanced Process Controllers in DCSs
- 6. Describe and evaluate the latest trends related to DCSs such as industrial Internet, Internet of Things, Mobile and remote devices.
- 7. Apply HMI and SCADA design of DCSs

2.12 Human-Computer Interaction

- 1. Interpret user-centered designs and explore their associate interdisciplinary nature.
- 2. Describe and use HCI design principles, standards and guidelines.
- 3. Apply an interactive design process and universal design principles to designing userinterfaces.
- 4. Compare state-of-the-art technologies for user interaction design.
- 5. Evaluate the user-centered rationale for an interactive system design project.
- 6. Implement, using a collaborative approach, user centered designs in industrial application.

2.13 Mobile and Ubiquitous Computing

- 1. Describe and discuss the emerging topics (vision, motivation, challenges) of pervasive and ubiquitous computing as well as context-aware computing and their applications.
- 2. Explain and show the ability to implement concepts related to the design and utilization of smart (mobile) systems.
- 3. Understand the major concepts and components of wireless and mobile networks
- 4. Describe and discuss the next generation mobile systems (e.g., smartphones, tablets) and their application areas.

- 5. Demonstrate basic knowledge in developing smartphone applications using various platforms, toolkits, APIs and third-party libraries.
- 6. Develop and research in the different topics related to ubiquitous computing such as Sensing and Basic Electronics; Tangible Computing; Wearable Computing; Sustainability and Technology.

2.14 Industrial Communication Protocols

- 1. Explain the rationale behind the technological development of industrial networks from telemetry systems to modern SCADA systems
- 2. Identify and explain the reasons behind the differences between industrial network communication protocols and the protocols used in general computer networking.
- 3. Investigate the relevance and applicability of the seven layers OSI model to commonly used industrial protocols such as Ethernet IP, Modbus, Profibus and DNP3
- 4. Compare and evaluate the relative strengths and weaknesses of different industrial protocols for particular applications.
- 5. Select an industrial protocol and use it in an application such as building services, power
- 6. systems automation, water treatment and factory automation

2.15 Internet of Things

- 1. Able to understand the application areas of IOT .
- 2. Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks
- 3. Able to understand building blocks of Internet of Things and characteristics
- 4. Able to design and program some IOT based devices and prototypes
- 5. Able Secure the elements of an IoT device
- 6. Able to design an IoT device to work with a Cloud Computing infrastructure.
- 7. To be familiar with the key wireless technologies used in IoT systems, such as WiFi, 6LoWPAN, Bluetooth and ZigBee

2.16 Low power networks

- 1. Become informed as to why WSNs are underpinning the evolution to the Internet of Things.
- 2. Discover the challenges of providing connectivity to devices that are operating in highly variable and lossy RF environments.
- 3. Build a solid understanding of the wireless protocols that have been defined to support connectivity of low power devices.
- 4. Understand the different mechanisms important for enabling sensors and other low power devices to connect to the Internet.
- 5. Learn key routing protocols for sensor networks and main design issues.
- 6. Reveal what higher layer protocols are enabling applications and services to run over wireless Low Power Networks.
- 7. Understand the Sensor management, sensor network middleware, operating systems.

2.17 Mobile Communication Networks

- 1. Understand the main principles of the different mobile communication systems, and track their evolution paths.
- 2. Develop a thorough knowledge of the system architecture for the traditional and the emerging cellular communication networks, and compare their architectures in terms of their components, interfaces, and interactions.

- 3. Evaluate the technical issues in the existing mobile communication networks including. coverage area, interference analysis, handoff strategies, channel assignment, trunking efficiency, security, and multiple access techniques.
- 4. Apply radio resources' management principles to evaluate the capacity and the spectral efficiency of the existing cellular communication networks, and to design new systems.
- 5. Analyze and calculate the path loss, fading profiles, and effects of multi-path propagation in various cellular environments.
- 6. Understand the technical strategies in the design of LTE and discuss the technical features of the emerging cellular communication systems.

2.18 Network Optimization

- 1. Apply the different optimization methods, a powerful tool for solving problems involving constrained optimization of time averages.
- 2. Understand the theory of dynamic decision making for networks and other stochastic systems.
- 3. Formulate the complex problems in the standard form of minimizing an objective subject to an additional set of constraints. This includes linear and convex programs and their counterparts.
- 4. Implement the knowledge of the modern optimization algorithms for routing problems, shortest path, minimum-cost flow and maximum flow.
- 5. Explore hot-topic problems of opportunistic scheduling, approximate scheduling, dynamic data compression, efficient energy allocation.
- 6. Become skilled to apply the theory by formulating and solving their own problems that involve dynamic decisions and implement a research projects.

2.19 Machine Learning

- 1. Describe the principles of Human Computer Interface systems, and give examples to illustrate the concepts of the subject.
- 2. Learn a theoretical knowledge and practical experiences in the fundamental aspects of designing, implementing and evaluating interfaces.
- 3. Compare state-of-the-art technologies for user interaction design.
- 4. Analyze the system requirements.
- 5. Design effective and usable graphical computer interfaces
- 6. Apply contemporary techniques for implementing interfaces, and have experienced building applications through prototyping tools, window-based systems, and toolkits
- 7. Interpret user centred designs and explore their associate interdisciplinary nature.
- 8. Evaluate the user-centered rationale for an interactive system design project.
- 9. Implement, using a collaborative approach, user centered designs in industrial applications.

3. Findings

The main findings are shown in Table 2.

#	Course Title	Needed Expertise	Equipment needed
1	Dependability (Safety, Reliability and Availability	There is a need for training courses in the techniques and tools for detecting and handling software and hardware faults such as fault injection.	Fault diagnosis toolbox for MatLab Fault detection and isolation toolboxes for MatLab
2	Security and Privacy	Both faculty and technicians at labs need practical training courses in the following security tools and technologies: Network Security Monitoring tools, Encryption Tools, Web Vulnerability Scanning tools, Network Defence Wireless Tools, Packet Sniffers, Firewall, PKI Services, Managed Detection Services.	Lab for software and network security with security tools and technologies: Network Security Monitoring tools, Encryption Tools, Web Vulnerability Scanning tools, Network Defence Wireless Tools, Packet Sniffers, Firewall, PKI Services, Managed Detection Services.
3	Cloud Computing	Faculty at TTU need practical training courses of the top cloud computing services such as: - Amazon Web Services - Microsoft Azure - Google Cloud - etc.	Subscriptions of cloud computing services in order to explore the features and capabilities of these services.
4	Control systems	Available	Available
5	Embedded Systems	The faculty at TTU need intensive training course in designing embedded systems, best software toolboxes and hardware for developing embedded systems, programmable boards.	Latest Hardware and software for constructing case studies in embedded systems.

Table 2: Survey Results Summary

Version 1

7	SENSORS AND ACTUATORS	Available	- Equipments are needed, Sensors and actuators
8	Wireless Communication Networks	Partially needed	Simulators
10	Entrepreneurship	Available	No equipments
11	Distributed Control Systems	Needed a training course in using HMI and SCADA for developing distributed control systems.	Computer Lab with HMI and SCADA software.
12	Human-Computer Interaction	Need a training course in the latest technologies used in HCI such as: BCI, Motion Capture, 3D capture, 3D Projection, VR and AR.	HCI Lab with latest equipment and technologies in HCI field
13	Mobile and Ubiquitous Computing	Needed	-Sensors, simulators
14	Industrial Communication Protocols	Needed	Simulators and various software
15	Internet of Things	Needed	Research and teaching lab with wireless technologies (WiFi, 6LoWPAN, bluetooth and ZigBee)
17	Mobile Communication Networks	Needed	
18	Network Optimization	Available	-
19	Machine Learning	Available	-

From the table above, we can see training is needed for the different topics mainly embedded systems, internet of things, distributed control, security, dependability, safety, reliability and availability. Various equipment are required such sensors, actuators, laptops, tablets, as well as various software's such as MATLAB and network simulators.

4. Conclusion

After reviewing the results of the different surveys from partner countries and analysing it, the findings were summarised in table 2 that shows the main needed expertise from partner countries.

In the previous deliverable we had identified the main modules and possible courses as well as the ILOs. Looking at the proposed needed capacities and labs we can conclude what is mainly needed is mostly practical training within the curriculum and a shared pedagogy.

For the labs there is a need to carry on the discussion on the case studies needed and build upon it what sort of labs are needed and this was started in the last workshop at USF.

5. Appendix I

International Master of Science on Cyber Physical Systems

D1.3 Survey

Introduction

As a result of the work done in D1.2 and in the workshop held at GJU in June, the core modules were identified and consequently the learning and objectives were decided upon. We use this survey to identify the needed capacity to implement these modules in partner countries in terms of human and lab resources and make the necessary plan to compensate these shortcomings.

The following table shows the different modules and the courses under each module, the ones shaded are the core courses.

Embedded systems [CU]-USI	Safety and Security [TTU]-HERT
Embedded platforms (hardware and	Security (privacy, data integrity)
<mark>software)</mark>	Dependability (Safety, reliability,
Real-time systems	availability)
Sensors and actuators	
Control systems	AI and advanced computing [USF]-
	HERT
Advanced communication	Machine learning
networks [PTC]-USI	Big data analytics
Internet of things	Multi-agent systems
Distributed systems (open	Anomaly detection
industrial)	Computer vision
Cloud computing	Semantic web
Low power networks	Optimization
Network optimization	Theory and Algorithms

Industrial communication protocols Mobile communication networks	Software engineering
Wireless communication networks	Human/Machine Systems [AQU]-
(knowledge and design of APIs)	КТН
	Human machine interaction
Entrepreneurship [GJU]-KTH	Mobile and Ubiquitous Computing
Innovation and entrepreneurship	Distributed control systems
(incl. project work)	
Project management	

The ILOs for each course are shown in the table below.

#	Course Title	Learning Outcomes	Level of Expertise in your institute (1 - 10)	Needed Expertise	Equipment needed to teach this course
1	Dependability (Safety, Reliability and Availability	 Students are able to understand the requirements of CPSs dependabil ity in terms of safety, reliability and availability. Students are able to describe the terminology and concepts used in specification, design, implementation, operation and evaluation of dependable CPSs. Students are able to identify and analyze the factors that influences hardware and software failure processes in CPSs environment. Students are able to describe and use the common practices, mechanisms and architectures to achieve faults tolerant, survivabilit y and resilience in CPSs. Students are able to evaluate and implement the dependability attributes of CPSs (safety, reliability and availability) in 			

		order to protect		
		humans and an		
		organization's		
		assets.		
		6. Students are able		
		to predict the		
		hardware and		
		software failure		
		rates and their		
		impact on the CPSs		
		hebavior		
	Socurity and	1 Students con		
2	Drivoov	identify major types		
	Filvacy	of threads, rights		
		of threats, risks,		
		attacks and		
		vulnerabilities of		
		information,		
		application, and		
		network security		
		and privacy in		
		Cyber Physical		
		System		
		environments and		
		develop a security		
		model to prevent,		
		detect, and recover		
		from them.		
		2. Students are able		
		to understand and		
		examine how the		
		major security		
		tools, techniques,		
		and approaches		
		such as access		
		control		
		management,		
		firewalls, anti-virus		
		software, intrusion		
		prevention systems,		
		proper backups and		
		restores		
		management		
		systems, and proper		
		secure protocols		
		work in detail for		
		testing, monitoring		
		tracking and		
		auditing of security		
		threats and		
		······································		

vulnerabilities of	
Cyber Physical	
Systems and how	
the security tools	
can be deployed in	
practice taking into	
account associated	
strengths and	
weaknesses	
, called be b	
3. Students can	
demonstrate ability	
to independently	
select and exercise	
the appropriate	
nractices and	
technologies	
necessary to solve	
concrete problems	
in cyber and	
information security	
related to	
confidentiality	
(cryptographic	
(cryptographic solutions) integrity	
(authentication such	
(authentication such	
as bioineurc),	
availability (101	
detection solutions)	
and privacy	
and privacy	
homes and	
professional	
environments.	
1. Students are able	
4. Students are able	
develop a security	
architecture for	
Cyber Dhysical	
Cyber Physical Systems to analyze	
Systems to ensure	
service continuity	
and renability	
5 Students are able	
to design	
operational security	
and privacy	
nolicios stratogica	
	1

and standards and	
practices for Cyber	
Physical Systems	
and recognize the	
role of management	
in enforcing	
security and privacy	
policies, standards	
and practices.	
I I I I I I I I I I I I I I I I I I I	
6 Students con	
demonstrate	
capabilities to apply	
the security and	
privacy knowledge	
in new areas within	
Cyber Physical	
Systems in	
narticular cloud	
computer security,	
security on the	
Internet of Things	
(IoT), and security	
of blockchain	
technology	
applications	
upphoutons.	
7 Student con	
describe and	
compare the	
common	
cryptographic	
encryption and	
decryption	
algorithms and the	
tools to ensure data	
integrity such as	
Integrity such as	
nasning, symmetric	
and asymmetric	
encryption,	
certificates, and	
methods of	
implementing	
cryntogranhy	
oryptography.	
0 Students and alla	
o. Students are able	
to systematically	
and independently	
solve complex	
problems of	

		research and		
		development in the		
		field of security and		
		privacy of Cyber		
		Physical Systems		
		by analyzing		
		by analyzing,		
		formulating sub-		
		tasks, and		
		proposing and		
		implementing		
		innovative		
		solutions.		
		9. Students are able		
		to identify and		
		assess security and		
		nrivacy risks in		
		Cuber Dhysical		
		Cyber Physical		
		System		
		environments to		
		mitigate, avoid, and		
		transfer these risks.		
		10. Students are		
		able to understand		
		the data attributes		
		such as		
		such as		
		connuentianty,		
		possession or		
		control, integrity,		
		authenticity,		
		availability, and		
		utility, any of which		
		can make it		
		vulnerable to attack.		
0	Cloud	1. Describe		
3	Computing	fundamental		
	computing	concepts of cloud		
		computing and		
		differentiete		
		between service and		
		deployment models		
		of cloud		
		computing.		
		2. Illustrate		
		fundamental		
		concepts of cloud		
		storage and		
		compare different		

		types of cloud file systems and databases.		
		3 Examine cloud programming models and apply them to solve problems on the cloud.		
		4. Discuss resource virtualization and their role in enabling the cloud computing model.		
		5. Assess the performance, scalability, and availability of the underlying cloud technologies.		
		6. Identify security and privacy issues in cloud computing.		
		7. Deploy applications over commercial cloud computing infrastructures such		
		as Amazon web Services (AWS), Windows Azure, and Google AppEngine.		
4	Control systems	1. understand the core principles behind CPS. A solid understanding of these core principles is important for anyone who wants		
		to integrate cyber		

and physical		
components		
2. develop models		
and controls. In		
order to understand,		
design, and analyze		
CPS, it is important		
to be able to		
develop models for		
the various relevant		
aspects of a CPS		
design and to		
design controllers		
for the intended		
functionalities		
based on		
appropriate		
specifications		
3 Identify the		
relevant dynamical		
aspects. identify		
which types of		
phenomena of a		
CPS have a relevant		
influence for the		
purpose of		
understanding a		
particular property		
of a particular		
system.		
4. Computational		
Thinking.		
- identify safety		
specification		
s and critical		
properties		
- understand		
abstraction		
in system		
designs		
- express pre-		
and post-		
conditions		
and		
invariants		

				-
		for CPS		
		models		
		- Developing		
		correct CPS		
		designs		
		- use formal		
		methods		
		tools for		
		CPS		
		CrS		
		5. CPS Skills.		
		- understand the		
		semantics of		
		a CPS		
		model		
		davalon an		
		- develop all		
		operational		
		effects		
		- Understand		
		opportunitie		
		s and		
		challenges		
		in CPS and		
		verification.		
5	Embedded	1. Demonstrate		
5				
	Systems	knowledge and		
	Systems	knowledge and understanding of		
	Systems	knowledge and understanding of the fundamental		
	Systems	knowledge and understanding of the fundamental principles		
	Systems	knowledge and understanding of the fundamental principles embedded systems		
	Systems	knowledge and understanding of the fundamental principles embedded systems design_explain the		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software.		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software.		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software. 3. Design		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software. 3. Design embedded systems		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software. 3. Design embedded systems based on		
	Systems	knowledge and understanding of the fundamental principles embedded systems design, explain the process and apply it 2.Demonstrate knowledge and understanding of the microprocessor technology both for hardware and software. 3. Design embedded systems based on microprocessor.		

		4. Demonstrate		
		knowledge and		
		understanding of		
		Hardware/Software		
		co-design		
		techniques for		
		microprocessor-		
		based embedded		
		systems, apply		
		techniques in		
		design problems.		
		5. Program		
		microprocessors in		
		C using Integrated		
		Development		
		Environments.		
		6. From an abstract		
		description design		
		and implement a		
		small but typical		
		embedded time-		
		ordered application		
		for one emulated		
		target machine		
6	Real time	1. Understanding		
0	systems	principles of		
		embedded systems		
		design; be aware of		
		architectures and		
		behaviors of		
		embedded systems.		
		2. Specify needs to		
		create a real-time		
		system and where		
		real-time		
		requirements are		
		needed		
		3. Design an		
		application with		
		real-time		
		constraints.		
		4. Solve scheduling		
		problems and apply		
		them in real time		

				
		applications in industry		
		5. Discover the usual methods for Real Time Specification. SADT, SART, and will focus on the UML specification		
7	SENSORS AND ACTUATOR S	1. Explain fundamental physical and technical base of sensors and actuators,		
		2. Develop an understanding of measurement principles, signal conditioning and data acquisition systems.		
		3. Develop systematic techniques for specifying transducers best suited to a range of applications.		
		4. Understand the design concepts and operation of a broad range of actuator devices.		
		5.Give in depth consideration of the performance envelopes and basis of selection of different actuator and microactuator types.		

	Winalaga	1 Summarize and		
8	wireless	1. Summarize and		
	Communicati	describe the		
	on Networks	properties,		
		characteristics and		
		design different		
		types of		
		Communication		
		Networks,		
		Protocols and		
		TCP/IP Suite.		
		2. Build a deep		
		understanding for		
		Wireless Channel		
		and Signal		
		Encoding		
		Techniques in terms		
		of Antennas,		
		Spectrum		
		Considerations,		
		Line-Of-Sight		
		Transmissions and		
		Signal Encoding		
		Criteria.		
		3. Explain and		
		Summarize the		
		Orthogonal		
		Frequency Division		
		Multiplexing		
		(OFDM) and the		
		types of Spread		
		Spectrum.		
		T. T		
		4. Apply		
		knowledge of		
		Coding and Error		
		Control in order to		
		compare error		
		recoverv processes		
		among different		
		types of codes.		
		v 1		
		5. Explain and		
		describe the		
		Architecture,		
		Services, Access		
		Control and		
		Physical Layers of		
		IEEE 802 standards		

		for the Wireless		
		LAN (WLAN) and		
		Bluetooth		
		Technologies.		
		6. Explain,		
		summarize the		
		Wireless Mobile		
		Networks and Long		
		Range		
		Communication		
		Networks such as		
		Satellite Networks		
		technologies and		
		their related		
		standards.		
9	Distributed	1. Summarize and		
	System	properties		
		characteristics.		
		design and different		
		types of distributed		
		systems.		
		2 Explain		
		2. Explain distributed		
		architectures and		
		processes in an		
		industrial		
		enterprise.		
		3 Explaining the		
		rules		
		communicating		
		processes and data		
		transmissions in		
		distributed		
		systems.		
		4. Describe how		
		processes can		
		synchronize and		
		coordinate their		
		actions.		

10	Entrepreneurs hip	 5. Apply appropriate data replication methods to improve reliability and performance of distributed systems 6. Use appropriate techniques in order achieve fault tolerance and recovery process. 1. learn how to think on ideas that 	1	The following expertise is	No special hardware.
		have business, marketing values and solves a problem in an efficient and distinguished way. 2. Define the target market, competitors, the competitive advantage, and learn how to conduct a market research study and analysis		needed to deliver the course efficient: - Business develop ment - Marketin g skills - Basic financial knowled ge - Entrepre neurship practical experienc	
		 3. Learn how to build a successful team and identify the needed resources 4. Learn the different business models that can be used to monetize the proposed idea 5. Know how market the business idea and reach the customers 		e 18 preferred	

		6. Learn different		
		methodologies and		
		mechanisms used to		
		raise funding		
		7. How to write a		
		successful business		
		plan.		
11	Distributed	1. Describe		
11	Control	sensors,		
	Sytems	instrumentation,		
		and process control		
		as their relation to		
		DCSs.		
		2. Know DCS		
		organization and		
		operation		
		· F · · · · · · · ·		
		3. Understand		
		networking, HML		
		and alarm features		
		of DCSs		
		01 DC05		
		4 Understand		
		Issues and		
		procedures to		
		procedures to		
		maintanance and		
		troublashooting		
		uoubleshooting		
		5 Compare and		
		5. Compare and		
		advanced Process		
		Controllers in		
		DCSS		
		(Data 1		
		b. Describe and		
		evaluate the latest		
		trends related to		
		DCSs such as		
		industrial Internet,		
		Internet of Things,		
		Mobile and remote		
		devices.		
		7. Apply HMI and		
		SCADA design of		
		DCSs		

				,
12	Human-	1. Interpret user-		
12	Computer	centered designs		
	Interaction	and explore their		
		associate		
		interdisciplinary		
		nature.		
		2. Describe and use		
		HCI design		
		principles		
		standards and		
		guidelines		
		guidelines.		
		3. Apply an		
		interactive design		
		process and		
		universal design		
		principles to		
		designing user-		
		interfaces		
		interfaces.		
		4 Compare state-		
		of_the_art		
		technologies for		
		user interaction		
		design		
		design.		
		5 Evaluate the		
		J. Evaluate the		
		rationala for an		
		interactive systems		
		design project		
		design project.		
		6 Implement		
		0. Implement,		
		using a		
		conaborative		
		approach, user		
		inductrial		
		industrial		
	Mobile and	application.		
13	Informations	1. Describe and		
	Computing	amorging tonics		
	Computing	(vision motivation		
		(vision, mouvation,		
		challenges) of		
		pervasive and		
		uoiquitous		
		computing as well		
		as context-aware		

computing and their	
applications	
upphontions.	
2. Explain and	
show the ability to	
implement concepts	
related to the design	
and utilization of	
and utilization of	
smart (mobile)	
systems.	
3 Understand the	
5. Onderstand the	
major concepts and	
components of	
wireless and mobile	
networks	
1 Describe and	
discuss the next	
generation mobile	
systems (e.g.,	
smartphones.	
tablets) and their	
application group	
application areas.	
5. Demonstrate	
basic knowledge in	
developing	
smartphone	
applications using	
various platforms,	
toolkits, APIs and	
third-party	
libraries	
6 Develop and	
o. Develop and	
research in the	
different topics	
related to	
ubiquitous	
computing such as	
Computing such as	
Sensing and Basic	
Electronics;	
Tangible	
Computing:	
Wearable	
Computing	
Computing;	
Sustainability and	
Technology	

14	Industrial	1. Explain the		
11	Communicati	rationale behind the		
	on Protocols	technological		
		development of		
		industrial networks		
		from		
		telemetry systems		
		to modern SCADA		
		systems		
		5		
		2. Identify and		
		explain the reasons		
		behind the		
		differences between		
		industrial network		
		communication		
		protocols and the		
		protocols used in		
		general computer		
		networking.		
		C		
		3. Investigate the		
		relevance and		
		applicability of the		
		seven layer OSI		
		model to		
		commonly		
		used industrial		
		protocols such as		
		EthernetIP,		
		Modbus, Profibus		
		and DNP3		
		4. Compare and		
		Evaluate the		
		relative strengths		
		and weaknesses of		
		different industrial		
		protocols for		
		particular		
		applications.		
		5. Select an		
		industrial protocol		
		and use it in an		
		application such as		

		building services,		
		power		
		systems		
		automation, water		
		treatment and		
		factory automation		
	T 4 C			
15	Internet of	I. Able to		
	Things	understand the		
		application areas of		
		IOT .		
		2. Able to realize		
		the revolution of		
		Internet in Mobile		
		Devices Cloud &		
		Devices, Cloud &		
		Sensor Networks		
		3. Able to		
		understand building		
		blocks of Internet of		
		Things and		
		characteristics		
		1 Able to design		
		+ .AUIC to uesign		
		and program some		
		IOT based devices		
		and prototypes		
		5. Able Secure the		
		elements of an IoT		
		device		
		6 Able to design		
		on IoT device to		
		work with a Cloud		
		Computing		
		infrastructure.		
		7. To be familiar		
		with the key		
		wireless		
		technologies used		
		in IoT systems		
		such as WiFi		
		$6I_{O}WD\Lambda N$		
		ULUWFAIN,		
		diversion and		
		ZigBee		
16	Low power	1. Become		
10	networks	informed as to why		

WSNs are	
underpinning the	
evolution to the	
Internet of Things.	
2. Discover the	
challenges of	
providing	
connectivity to	
devices that are	
operating in	
bighly variable and	
lossy RF	
environments	
environments.	
2 Puild a solid	
J. Dullu a soliu	
the wirelass	
uie wifeless	
protocols that have	
been defined to	
support	
connectivity of low	
power devices.	
4 Understand the	
4. Understand the	
unterent	
mechanisms	
important for	
enabling sensors	
and other low	
power devices to	
connect to the	
Internet.	
5 1	
5. Learn key	
routing protocols	
for sensor networks	
and main design	
issues.	
C Darren landa et	
6. Keveal what	
higher layer	
protocols are	
enabling	
applications and	
services to run over	
wireless Low	
Power Networks.	

		7. Understand the		
		Sensor		
		management,		
		sensor network		
		middleware,		
		operating systems.		
17	Mobile	1. Understand the		
17	Communicati	main principles of		
	on Networks	the different mobile		
		communication		
		systems, and track		
		their evolution		
		paths.		
		2. Develop a		
		thorough		
		knowledge of the		
		system architecture		
		for the traditional		
		and the emerging		
		cellular		
		communication		
		networks, and		
		compare their		
		architectures in		
		terms of their		
		components,		
		interfaces, and		
		interactions.		
		3. Evaluate the		
		technical issues in		
		the existing mobile		
		communication		
		networks including.		
		coverage area,		
		interference		
		analysis, handoff		
		strategies, channel		
		assignment,		
		trunking efficiency,		
		security, and		
		multiple access		
		techniques.		
		4. Apply radio		
		resources'		
		management		
		principles to		
		evaluate the		

		capacity and the spectral efficiency of the existing cellular communication networks, and to design new systems. 5. Analyze and calculate the path loss, fading profiles, and effects of multi-path propagation in		
		various cellular		
		6. Understand the technical strategies in the design of LTE and discuss the technical features of the emerging cellular communication		
10	Network	systems. 1. Apply the		
18	Optimization	different optimization methods, a powerful tool for solving problems involving constrained optimization of time averages.		
		2. Understand the theory of dynamic decision making for networks and other stochastic systems.		
		3. Formulate the complex problems in the standard form of minimizing an objective subject to an additional set of		

		constraints. This
		includes linear and
		convex programs
		and their
		counterparts.
		4. Implement the
		knowledge of the
		modern
		optimization
		algorithms for
		routing problems,
		shortest path,
		minimum-cost flow
		and maximum
		flow.
		5. Explore hot-
		topic problems of
		opportunistic
		scheduling,
		approximate
		scheduling,
		dynamic data
		compression,
		efficient energy
		6 Pacoma skilled
		to apply the theory
		by formulating and
		by formulating and
		problems that
		involve dynamic
		decisions and
		implement a
		research projects
10	Machine	1. Demonstrate the
19	Learning	main concepts
	0	of Machine
		Learning (ML)
		terms and
		algorithms
		(supervised,
		unsupervised
		and
		reinforcement
		learning).
		2. Explore and
		recognize

X74	arious practical	
	enefits of MI	
f	or real world	
	nohloma	
	loutifue the	
	the the	
S1	gnificant	
CO	omponents in a	
pi pi	roduction ML	
sy	ystem.	
4. Ir	nplement and	
aj	pply	
al	lgorithms of	
	IL using	
a	ppropriate	
	rogramming	
l	inguages,	
11	braries, and	
fr	ameworks	
5. E	valuate	
	orrectness and	
n	erformance of	
N N	II model	
	evelop MI	
	adala for	
	alving real	
S	Jord problems	
	i various	
	omains such as	
h h	ealthcare,	
n n	harketing,	
tr	ansportation,	
SO	ocial media,	
et	tc.	