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Cyber-physical Systems

• CPS: Networked embedded systems
• Systems of systems
• Services of mixed criticality
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Increasing Flexibility for Building
Cyber-physical Systems

• Building system services from components 
that are less rigorously developed than 
required by the domain-specific safety 
standard.

• Why would we want to do that?
– simplification of development
– cost efficiency
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What is Mixed Criticality?

• CRIT (𝑆!) > CRIT (𝑆")  è
– “service 𝑆! is more critical than 𝑆" for the 

mission”
– safety integrity level (SIL) according to domain-

specific safety standards (IEC 61508, DO-178b, 
ISO 26262, etc.):

SIL(𝑆!) >= SIL(𝑆")
– assurance level of 𝑆! is higher than of 𝑆"

Example (Vestal,RTSS’07, criticality LO/HI): 
higher timing assurance available for service  
𝑆! than for 𝑆"
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System Model: Services & Tasks
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only an optimistic scheduling of WCET is known for
tasks with lower criticality. By contrast, for tasks of
higher criticality a safe upper bound of the WCET is
assumed also to be available. Vestal’s fault model is
that lower-criticality tasks may overrun their optimistic
WCET estimate at runtime. A significant body of re-
search has been established [2, 9, 3] based on Vestal’s
original basic fault model. The key point with Vestal’s
fault model is that it is possible to establish a guaran-
tee that the higher-criticality tasks are still schedulable
based on their safe upper WCET bound.

In this paper we look at fault tolerance for mixed-
criticality scheduling in a broader way than Vestal’s
fault model. We motivate this by noting that it is pos-
sible that due to faults it may not even be possible
to guarantee the schedulability of the higher-criticality
tasks. To cope with such cases one might work with re-
dundancies, possibly in combination with diverse pro-
gramming, and make scheduling decisions that ensure
the overall system utility is as high as possible.
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Figure 1. The Concept of Tasks and Services

To clarify the discussion of mixed-criticality schedul-
ing throughout this paper, we introduce and describe
some basic concepts. Figure 1 shows some relations
between concepts of the control system and the envi-
ronment. First, we distinguish between services Si and
tasks tj . A service is a functional behaviour that a sys-
tem has to provide. The services are virtual concepts
as they might not be directly reflected in the compo-
nents’ implementation inside the system. On the im-
plementation side, we have multiple tasks with their
run-time instantiation called jobs. The services de-
scribe the functional relationship of the system with its
environment, i.e., the system reading input from sen-

sors and setting values via actuators. When designing
system services, it is important to consider the poten-
tial negative impact in case the failure of an individual
service has.

This measure of the negative impact of failure is
called criticality. A higher criticality means a higher
negative impact in case of failure. To determine the
criticality of a service it is important to consider the
application context of the system. For example, a sim-
ple service to control the position of a valve would have
a quite di↵erent criticality if it is used in an aeroplane
to control the cabin pressure (which is a safety-critical
function) or to control the water level in a water tank
for a toilet flush (which would be of relative low crit-
icality). The criticality of a service is then used to
determine the SIL that is needed for this particular
service by following safety standards relevant to this
application area. While we recognise that it may be
useful to di↵erentiate between multiple levels of criti-
cality, for simplicity in this paper we will use high and
low criticality to explain concepts.

What is important here is that there is no 1:1 re-
lationship between services and tasks. For example,
in Figure 1 we have service Sm implemented by tasks
⌧1 and ⌧3, and service Sn be implemented by tasks ⌧2
and ⌧ 02. Furthermore, the system might have di↵erent
modes, where each mode can have its own set of tasks
to be executed. Depending on the stage of a mission
or external events, the system might switch between
di↵erent modes. For example, in previous work on
mixed-criticality scheduling, fault events like the over-
run of the optimistic WCET estimate have been used
to switch from a normal operation mode into emer-
gency modes where tasks of higher criticality are given
preference [4, 5, 6, 13].

In our example in Figure 1 we have service Sm be-
ing implemented by di↵erent tasks depending on the
concrete mode, i.e., task ⌧1 in mode A and task ⌧3 in
mode B.

Authors have called the inclusion of a task to a spe-
cific mode the task’s importance for that mode in order
to make clear that criticality is not the sole criterion to
determine scheduling decisions [8]. While the impor-
tance of a service depends from outside on the concrete
control application, the importance of a task depends
on internally which mode is currently active.

Tasks ⌧1 and ⌧2 might require a di↵erent amount of
resources, and consequently provide a di↵erent qual-
ity of service. Service Sn is implemented by the same
two tasks ⌧2 and ⌧ 02 in both modes. That service Sn

is implemented by two tasks could have di↵erent rea-
sons, e.g., ⌧2 and ⌧ 02 both implement just parts of the
function of Sn, or maybe ⌧2 and ⌧ 02 are just redundant
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The Principle of SIL Arithmetic
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tasks both implementing Sn on their own. A task’s
criticality is inherited from its service. If a task imple-
ments more than one service, then the task’s criticality
is the maximum of the criticalities of all the services it
implements.

4 SIL Arithmetic

SIL arithmetic, or SIL synthesis [14], is the practice
of combining together multiple components at a rela-
tively low integrity level to realise a function at a higher
integrity level [24]. SIL arithmetic is dependent on
the concept of functional redundancy, which involves
the duplication of certain critical system components
which all provide a defined function. If any one of these
components fails, the remaining components will still
be able to provide that functions. The practice of SIL
arithmetic leverages redundancy to permit claiming a
higher achieved SIL for the function than the achieved
SIL of any of the individual redundant components.

SIL arithmetic in the automotive domain is known
as ASIL decomposition, and is commonly used where
system-level requirement have been decomposed into
redundant sub-requirements allocated to di↵erent com-
ponents [11]. If one of the components fails to satisfy
its sub-requirement then the other component may still
do so, meaning the overall system-level requirement re-
mains satisfied. From this, we see that a system imple-
menting redundancy correctly has a higher likelihood of
satisfying its requirements than an otherwise-identical
system without redundancy.

We note that an e↵ective system of redundancy
management [12] is required in order to detect primary
component failure and to reconfigure the system to use
the redundant component in place of the primary. Ef-
fective redundancy also requires independence of the
redundant components such that multiple components
will not be a↵ected, for example, by a common mode
failure. Systems with redundancy built in can continue
to operate - in some cases up to several days [16] - in
the event of partial failure.

Figure 2 visualises the idea of SIL arithmetic. The
example shows a service Sm, being implemented by two
independent but redundant tasks ⌧2 and ⌧ 02. As already
described in Section 3, the criticality of the service is
derived from the criticality of the environment of the
control system, i.e., the application. The criticality of
the tasks is inherited as the maximum from the services
they implement. As both ⌧2 and ⌧ 02 only implement one
service Sm, their criticality is the same as that of ser-
vice Sm. On the other hand, the SIL of the service
Sm is then derived from the SIL of ⌧2 and ⌧ 02 via SIL
arithmetic. The resulting SIL of service Sm has to be
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Figure 2. The Principle of SIL Arithmetic

appropriate for its criticality determined by the appli-
cation of the control system.

4.1 Benefits of SIL Arithmetic

SIL arithmetic can be beneficial in terms of reduc-
ing development time and costs since it is generally
regarded as less resource-intensive to develop compo-
nents at lower SILs, although demonstrating su�cient
independence between these components to permit SIL
arithmetic may still be a non-trivial task [21]. SIL
arithmetic also allows for the commercial pressures of
developing and procuring systems. In some cases these
pressures mean that components have to be procured
before their SIL can be assured, or that use of legacy
components at a lower SIL is required [1].

Another benefit of developing components to a lower
SIL is the consequent reduction in complexity of these
components. Components of lower complexity are eas-
ier to develop, and the risk of an undetected failure
mode is lessened. Furthermore, these components may
also be easier and cheaper to maintain.

4.2 SIL Arithmetic and Standards

In IEC 61508 [14], SIL arithmetic in hardware sys-
tems is endorsed as part of a discussion of the ways
in which systems of di↵erent SILs can be combined,
and the e↵ect on the SIL of the resultant combined
system. Where a safety function is implemented via
multiple channels with a given hardware fault toler-
ance, the overall SIL is calculated by identifying the
channel with the highest SIL, and adding a number of
integrity levels dependent on the hardware fault toler-
ance of the combined channels. There is a limit on the
SIL increment which can be claimed using this method.

ISO 26262 [19] also discusses SIL arithmetic,
terming it ASIL decomposition. Here, a safety func-
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Example: Unmanned Aerial Vehicle (UAV)
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• System with 4 services
• Service 𝑆! realised with 2 tasks,

each SIL 1 (using SIL Arithmetic)

tion assigned a nominated ASIL (Automotive Safety

Integrity Level) can be decomposed into redundant
safety requirements, satisfied by independent archi-
tectural elements. A commonly-used implementation
of this is to decompose a safety requirement into a
functional requirement and a safety mechanism, which
acts against failure of that functionality. As with the
SIL arithmetic discussed in [14], the combinations
which represent an acceptable ASIL decomposition
are limited.

This is described in Table 2, where ASIL D is the
most rigorous level and ASIL QM equivalent to SIL 0.
Where an ASIL is decomposed into less rigorous ASILs,
the original ASIL is shown in brackets following the
decomposition.

ASIL Acceptable Decomposition

ASIL D ASIL C(D) + ASIL A(D)
ASIL B(D) + ASIL B(D)
ASIL D(D) + ASIL QM(D)

ASIL C ASIL B(C) + ASIL A(C)
ASIL C(C) + ASIL QM(C)

ASIL B ASIL A(B) + ASIL A(B)
ASIL B(B) + ASIL QM(B)

ASIL A ASIL A(A) + ASIL QM(A)

Table 2. ASIL Decomposition

A third standard which endorses SIL arithmetic
is ARP 4754 which contains the recommended prac-
tices for development cycle of civil aircraft and sys-
tems [20]. This guideline, maintained from the SAE

International, addresses both functional safety and de-
sign assurance process and it is suppoted by the avia-
tion standards like DO-178C and DO-254. The safety
level, named Design Assurance Level (DAL), is deter-
mined from the safety assessment process and hazard
analysis by examining the e↵ects of a failure condition
in the system. There are five safety levels with A be-
ing the most critical and E the less critical one. As
with both ISO 26262 and IEC 61508, there are further
constraints on the extent of SIL arithmetic that can be
performed in accordance with this.

4.3 Pitfalls of SIL Arithmetic

Although SIL arithmetic confers benefits as de-
scribed in Section 4.1, it can lead to some poten-
tially ambiguous situations related to safety assurance.
Mixed-criticality tasks are scheduled according to the
criticality of the service they implement and in case
of services composed by individual tasks the SIL level
exactly reflects the task criticality.

However, within systems where two or more redun-
dant components are linked via SIL arithmetic to re-
alise a service at a higher SIL, if one component fails
then the “protective” element of redundancy is re-
moved. A consequence of this is that the entire service
can no longer be adequately assured at the higher SIL
as it is now provided only by a single component that
itself is at a lower SIL.

The second issue that is necessary to consider is re-
lated to component failure. If multiple dependent not
redundant components are linked to implement a ser-
vice, a failure of one of these components could result
in a failure of the overall service since an important
part of the sub-goal would be no longer achievable. In
this case, the scheduler may choose to abandon all the
related tasks implementing the entire service.

Therefore component or, more generally, sub-system
failure is a significant concern for safety-critical systems
since this can jeopardise the correct functioning also of
the related system components.

5 SIL-Arithmetic-aware Scheduling

Safety-critical systems are hard real-time systems
providing di↵erent services Si implemented by one or
more tasks ⌧j . Table 3 and Table 4 contain respectively
a description of tasks within an Unmanned Aerial Ve-

hicle (UAV) used for monitoring purposes, and the SIL
that each task and function can be adequately assured
to. Apart from service S3, each service is implemented
by one task.

Service (Task) Description SIL

S1 (⌧1) trajectory 3
S2 (⌧2) earth monitoring 2
S3 (⌧3 and ⌧ 03) communication with station 2
S4 (⌧4) logging of tasks’ events 1

Table 3. UAV Example: tasks prior to failure

The service most important to safety is S1, which
is responsible for keeping the drone trajectory steady,
and consequently is designed to SIL 3.

Service S2 and S3 are responsible respectively for
monitoring the soil via camera and for communica-
tion with base station. Lastly, service S4 records every
metadata and event related to the above tasks. In this
table service S3 represents a function realised at SIL 2
by incorporating two redundant and independent SIL 1
tasks ⌧3 and ⌧ 03.

Table 3 provides an example of the first problem
identified in Section 4.3. If the scheduler suddenly
drops ⌧3 when resources are scarce, then service S3 can
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Example: Unmanned Aerial Vehicle (UAV)
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• Tasks before failure:
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Example: Unmanned Aerial Vehicle (UAV)

• Tasks after failure of task 𝜏#:
Service 𝑆# only provided by task 𝜏#$
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no longer be assured to the same SIL, owing to the loss
of redundancy.

Service (Task) Description SIL

S1 (⌧1) trajectory 3
S2 (⌧2) earth monitoring 2
S3 (⌧ 03 only) communication with station 1
S4 (⌧4) logging of tasks’ events 1

Table 4. UAV Example: tasks after failure

Table 4 shows the situation after a failure of one of
the redundant tasks implementing the service S3. Here,
a failure of ⌧3 has resulted that service S3 is now solely
provided via task ⌧ 03, which is still scheduled at the
same criticality level assigned after the design phase.

One solution can be to appropriately manage the
hardware redundancy. This may be done via hotswap-
ping independent and redundant components to in-
crease the SIL level provided by the overall function
a↵ected as soon as possible. Together with this, we pro-
pose that systems incorporate a system monitor that
signals to the scheduler when sub-components fail so as
to undertake the appropriate countermeasures. When-
ever any task suddenly fail, the scheduler should make
a new schedulability test to check if the newly available
task set is still schedulable and find a novel suitable
schedule.

6 Implications of Security on System
Safety

The implementation of critical services with redu-
dant independent tasks via SIL arithmetic enhances
the overall robustness in terms of safety in case of mal-
functioning due to a cyberattack. In general, tasks
that are vulnerable to attacks are those that communi-
cate with the outside world or those that are dependent
from tasks communicating with the external environ-
ment. As an example, considering the use case used
for Table 3 and Table 4, service S3 can be vulnerable
to a malicious attacker. Di↵erent types of attacks are
possible:

• a Man in The Middle Attack (MTMA) attack can
cause a malfunction leading task ⌧3 to be dropped
so to increase its probability of failure of service S3;

• malicious software (e.g., virus or trojan) can be
injected in the system;

• a Distributed Denial of Service (DDoS) can lead to
drop task ⌧3 first and, if countermeasures are not

taken, task ⌧ 03 afterwards, leading to completely
stop service S3 (service disruption).

In all cases, a security breach can automatically have
an impact on the mixed-criticality scheduling process
since some task can unexpectedly become unavailable.
If safety-critical tasks are a↵ected, this can have se-
vere consequences. As an example, rail critical services
accessible via wireless network can be damaged by an
attacker that can send forged speed and braking profile
information to a locomotive using a train control appli-
cation and a↵ect the dependent and even more critical
braking task.

Therefore, adding functionalities that allow to com-
municate with the external world can help to build
more useful and flexible systems but, at the same time,
can expose critical services to novel and unexpected
threats. The mixed-criticality scheduling so far pro-
tects highly critical tasks by isolating them from the ex-
ecution interference of low critical ones in case of mal-
functioning or resource shortages. However, as modern
crafts become more and more connected to the outside
world, there is also the need to protect such critical
tasks from new potential threats. As an example, it
can be possible to alter the task scheduling or the over-
all system safety where high critical task is dependent
from data coming from a low critical task communi-
cating with the external environment or a↵ected by
malicious software. An even more critical situation to
manage could be when a highly critical task is directly
exposed to the external environment.

In this regard, the challenge woud be that to check
consistency and integrity of data managed by safety-
critical instances and, generally, to be sure that bo-
gus data exchanged during the scheduling process do
not have an impact on completion of safety-critical in-
stances.

7 Summary and Conclusion

This paper discusses the development of SIL arith-
metic within safety-critical systems, and the interac-
tion with scheduling concerns. It identifies how to
appropriately manage the scheduling process within a
mixed-criticality system in order to minimise the im-
pact on safety in the case of malfunction or cyberat-
tack.

We extended the scope of mixed-criticality schedul-
ing by replacing Vestal’s fault model focusing on
WCET overruns with a generic fault model. We also
described where criticality of a task and service is de-
rived from, and how SIL arithmetic is used in prac-
tice. We have extended this to identify some poten-
tial pitfalls of using SIL arithmetic and proposed that
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Conclusion

• Discussion of SIL arithmetic: its motivation 
and usage

• Argumentation why mixed-criticality 
schedulers should be aware of underlying use 
of SIL arithmetic: to maintain assurance level 
of service

• Work to be done: development of SIL 
arithmetic aware mixed-criticality schedulers
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