Using SIL Arithmetic to Design Safe and Secure Cyber-physical Systems

> Raimund Kirner University of Hertfordshire

> > MS@CPS Open Info Day, 26.08.2020

Cyber-physical Systems

- CPS: Networked embedded systems
- Systems of systems
- Services of mixed criticality

Increasing Flexibility for Building Cyber-physical Systems

 Building system services from components that are less rigorously developed than required by the domain-specific safety standard.

- Why would we want to do that?
 - simplification of development
 - cost efficiency

What is Mixed Criticality?

- CRIT $(S_1) >$ CRIT $(S_2) \rightarrow$
 - "service S_1 is more critical than S_2 for the mission"
 - safety integrity level (SIL) according to domainspecific safety standards (IEC 61508, DO-178b, ISO 26262, etc.):

 $SIL(S_1) >= SIL(S_2)$

– assurance level of S_1 is higher than of S_2 Example (*Vestal*, *RTSS'07*, criticality LO/HI): higher timing assurance available for service S_1 than for S_2

System Model: Services & Tasks

The Principle of SIL Arithmetic

- System with 4 services
- Service S₃ realised with 2 tasks, each SIL 1 (using SIL Arithmetic)

Service (Task)	Description	SIL
$S_1 (au_1)$	trajectory	3
$S_2 \ (au_2)$	earth monitoring	2
$S_3 (\tau_3 \text{ and } \tau'_3)$	communication with station	2
$S_4~(au_4)$	logging of tasks' events	1

• Tasks before failure:

Service (Task)	Description	SIL
$S_1(au_1)$	trajectory	3
$S_2(au_2)$	earth monitoring	2
S_3 ($ au_3$ and $ au'_3$)	communication with station	2
$S_4 (au_4)$	logging of tasks' events	1

• Tasks after failure of task τ_3 : Service S_3 only provided by task τ'_3

Service (Task)	Description	SIL
$S_1(au_1)$	trajectory	3
$S_2(au_2)$	earth monitoring	2
S_3 ($ au_3'$ only)	communication with station	1
$S_4 (au_4)$	logging of tasks' events	1

While assurance level of S3 after the failure of t3 is reduced from SIL2 to SIL1, the mixed criticality scheduler must treat the service S3 based on its original application-dependent criticality → scheduler should treat task t3' with increased **importance** to achieve this earth monitoring 2 τ_{2} $S_3 (\tau'_3 \text{ only})$ communication with station logging of tasks' events

Conclusion

- Discussion of SIL arithmetic: its motivation and usage
- Argumentation why mixed-criticality schedulers should be aware of underlying use of SIL arithmetic: to maintain assurance level of service
- Work to be done: development of SIL arithmetic aware mixed-criticality schedulers

Case-study Driven Education of Cyberphysical Systems

Real-time Operating Systems

System Program ming

Resilient Computing Use of Sensors

Feedbackbased Control