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Overview

• CW2 Overview

• Parallel Programming

• Finite State Machines

• Nested Finite State Machines

MS@CPS virtual training, Hatfield, 15.09.2020



CW2: Extended Autonomous Reliable Car

•EARC: Extended autonomous reliable car
•features:

1. Stop if obstacle ahead (IR sensors)
2. Search for binary large object (blob) using 

camera
3. Align to found blob
4. Keep distance to found blob (US sensors)
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CW2: Extended Autonomous Reliable Car
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Parallel Programming -
CW2 Requirements

•Activity of visual sensing takes relatively 
long (~ 1 second)
•Visual sensing takes too long to be included 
within main control loop
•Use of separate blob thread which does
•visual sensing
•blob search

•Whenever one blob search done, update 
the result to main control loop 
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Parallel Programming -
CW2 Requirements

MS@CPS virtual training, Hatfield, 15.09.2020

thread 0

(main control loop)

thread 1

(blob search)

Nested	Finite	State	Machines	-
Autonomous	Car

1.	12.	2016 6COM1043

OA
SB

RB

KD

FB

not	OS

noneBS

MB	(middle	blob)

OS

DB	(detected	blob)

AB

not
noneBS

NOA	(no	obstacle	avoidance)

middleBS

sideBS

middleBS

closeDS

farDS

not
farDS

not
closeDS blob info



Parallel Programming -
Foundations

•Sequential Computing:
complete one execution before next one 
starts

•Parallel Computing:
involves the concurrent or parallel 
execution 
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Parallel Programming -
Foundations

•Definition: Parallel Computing:
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Two or more computations are 
executed simultaneously



Parallel Programming -
Foundations

•Definition: Concurrent Computing:
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The interval between start and stop of 
two or more computations overlaps



Parallel Programming -
Example of Parallelism

• Task: bees need to kill visiting scout of 
Japanese Giant Hornet before it leaves and 
returns with reinforcement to kill the whole 
bee hive.
• Algorithm: Using the fact that bees can 

withstand higher temperatures than 
hornets, the bees form a ball around the 
hornet and vibrate in order to produce a 
temperature increase inside the ball that 
kills the hornet.
• This only works if the bees work in parallel, 

i.e., simultaneously (working concurrently is 
not sufficient).
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Parallel Programming -
Example of Concurrency without Parallelism

• John works in a customer service, where 
he occasionally has to answer the phone. 
In the pauses between two calls he reads 
a nice book.
• The work in the customer service and the 

book reading are two concurrent 
processes with overlapping start-end 
intervals.
• However, both processes cannot be 

executed at the same time (no reading 
while talking to a customer, so no 
parallelism)

MS@CPS virtual training, Hatfield, 15.09.2020



Parallel Programming -
Foundations

•Difference between processes and threads:
•processes:
• have their own address space
• communication only via inter-process communication 

mechanisms
• threads:
• all threads of same process share the address space
• communication directly via objects in shared memory
• synchronisation needed to ensure consistent 

communication
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Parallel Programming -
Creating concurrent programs with pthread.h
#include <pthread.h>
#include <assert.h>
void *worker(void *p_thread_dat);

int main (int argc, char **argv) {
int balance = 1000;
pthread_t rt_thread;   // thread management data
pthread_attr_t pt_attr;   // thread attributes
assert (pthread_create(&(rt_thread), &pt_attr, worker, &balance)==0 );
// do something concurrently to second thread:
balance = balance – 300;
// wait for thread to finish
assert ( pthread_join(rt_thread, NULL) == 0 );
pthread_attr_destroy(&pt_attr);  // destroy thread attribute
return EXIT_SUCCESS;

}
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Parallel Programming -
Creating concurrent programs with pthread.h

void *worker(void *p_thread_dat) {
int *balance = (int *) p_thread_dat;
// do some concurrent update of balance:
*balance = *balance + 100;
return NULL;

}
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Parallel Programming -
Creating concurrent programs with pthread.h

void *worker(void *p_thread_dat) {
int *balance = (int *) p_thread_dat;

// do some concurrent update of balance:
*balance = *balance + 100;
return NULL;

}
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extracting parameter inside 
thread function



Parallel Programming -
Race Conditions

• A race condition is a phenomenon where the computed 
result of two or more concurrent programs depends on 
the timing of the individual programs
• The execution time of the programs or scheduling 

decisions of the operating system, for example, can 
influence the execution time.
• Due to race conditions the final result can become non-

deterministic.
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Parallel Programming -
Race Conditions

balance = 1000;
void book_in (int amount) { balance = balance + amount; }
void book_out (int amount) { balance = balance - amount; }
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Thread 0:
book_in(100);

Thread 1:
book_out(300);

Q: what will be the final 
value of balance?



Parallel Programming -
Race Conditions
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Thread 0: Thread 1:
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Parallel Programming -
Race Conditions

• The basic problem of race conditions in the example is 
non-atomic access of shared data.
• The program parts where concurrent access to shared 

data happens is called "critical section"

• To fix this, we have to make sure that "critical section" is 
accessed by each program in an atomic way (no in-
between access of the shared data by any other program) 
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Parallel Programming -
Semaphore

•One way to make access to "critical sections" atomic, is 
the use of semaphores
• A semaphore S is a variable that represents the access 

state, being used via two functions:
• wait(S): "allocate resource": if S>0 then decrement S and 

program continues, if S=0 then thread blocks and is linked to 
the waiting list of S.
• signal(S): "deallocate resource": if S has waiting threads, then 

awake first blocked thread to continue, else increments value 
of S. 
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Parallel Programming -
Race Condition Eliminated

Extending the code with pseudoinstructions (wait/signal):

balance = 1000;
semaphore S=1;
void book_in (int amount) { wait(S); balance = balance + amount; signal(S); }
void book_out (int amount) { wait(S); balance = balance - amount; signal(S); }
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Thread 0:
book_in(100);

Thread 1:
book_out(300);

balance can only be 800

semaphore
pseudo instructions



Parallel Programming -
Implementing semaphores with pthread.h

#include <pthread.h>
int balance;
pthread_mutex_t count_mutex;

void book_in (int amount) {
pthread_mutex_lock(&count_mutex);
balance = balance + amount;
pthread_mutex_unlock(&count_mutex);

}
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Thread 0:
book_in(100);

Thread 1:
book_out(300);

void book_out (int amount) {
pthread_mutex_lock(&count_mutex);
balance = balance - amount;
pthread_mutex_unlock(&count_mutex);

}



Finite State Machines (FSM)

•State means that the machine has some memory
•When we have state, responses can be influenced 

by past sensory readings as well as current sensory 
readings.
•Theoretical models might have an infinite number 

of states
•A finite state machine (FSM) is a system with a finite 

number of states and rules of how to transition 
from one state to another state.

MS@CPS virtual training, Hatfield, 15.09.2020



Example: Finite State Machines
Light Switch
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Example: Finite State Machines
Garage Door

Scenario:
There is one door
There is one button
There are two limit-switches on the 
door mechanism
Rules:
Pressing button opens a closed door
Pressing button closes an opened door
Door stops opening when limit-switch1 
is triggered
Door stops closing when limit-switch2 is 
triggered
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Example: Finite State Machines
Garage Door
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Example: Finite State Machines
Garage Door
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Example: Finite State Machines
Garage Door
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FSM Categorisation

•Finite State Analysis
... what we just did
•Finite State Acceptor Diagram

... visualisation of FSM
•Finite State Machine (FSM)

= Finite State Automata (FSA)
•Augmented Finite State Machines (AFSM)

... FSM with extra features such as timers, memory,
etc.
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FSM Implementation

•FSMS can be implemented using general purpose 
programming languages,
for example: C, C++, Python, or Java
•However, in industrial sequential control 

applications, specialised components like 
Programmable Logic Controllers (PLCS) are 
commonly used.
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FSM Implementation
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state = initial-state;
forever {
input = Read-Sensors();
state = Update-State( state, input );
output = Set-Output (state);

}



Nested Finite State Machines

• Problem with FSM: complexity of transition graph tends to grow 
rather fast
à impractical to model larger systems
• At the same time, FSM make it hard to express priorities in case that 

multiple transitions are possible
• Solution: Nested Finite State Machines
• hierarchical transition graph
• states of outer level FSM can contain complete FSMs  
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Nested Finite State Machines

• State A is assumed to 
have priority over the 
other states (triggered 
via input a)
• Thus all other states 

need to have a direct 
transition to state A
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Nested Finite State Machines
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Nested FSM Implementation
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stateP = initial-state-P; // parent state
stateC = initial-state-C; // child state

forever {
inputP = Read-Sensors-P();
stateP = Update-State( stateP, inputP );
inputC = Read-Sensors-C( stateP );
input = inputP + inputC
stateC = Update-State-C( stateC, input );
output = Set-Output (stateC);

}



Formal Notation of FSM

• A finite state machine M is described by the following tuple:

M = {S, L, s, d, F, OF }

• S … set of states
• L … set of inputs
• s … initial state (unique)
• d: S x L à S   … state transition function
• F … set of final states (F is subset of S)
• OF … output function
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Formal Notation of FSM

• OF … output function
• There are two definitions of OF commonly in use:
• OF: S à O ... Moore machine
• OF: S x L à O ... Mealy machine

• In a Moore machine, the current state alone determines the 
output
• In a Mealy machine, the current state and the current input 

together determine the output
• The functional expressiveness of Mealy and Moore machine 

is the same.  However, a Mealy machine typically uses less 
states for the same model than the Moore machine.

MS@CPS virtual training, Hatfield, 15.09.2020



CW2: Nested Finite State Machines -
Autonomous Car

•Set of states S:
•OA … obstacle avoidance (stop car)
•SB … search blob (spin car)
•AB … adjust blob (spin car to center blob)
•KD … keep distance (stop car)
•FB … forward blob (drive forward)
•RB … reverse blob (drive backward)
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CW2: Nested Finite State Machines -
Autonomous Car

•Set of inputs L:
•Obstacle sensor OS:
• os … obstacle detected
• not os … no obstacle detected

•Blob sensor BS
• noneBS … no blob detected
• sideBS … blob detected sideways
• middleBS … blob detected in middle

•Distance sensor DS:
• farDS … far distance
• closeDS … close distance
• okDS … acceptable distance
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CW2: Nested Finite State Machines -
Autonomous Car
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CW2: Nested Finite State Machines -
Autonomous Car
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CW2: Nested Finite State Machines -
Autonomous Car
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CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA
SB

RB

KD

FB

¬OS

noneBS

MB (middle blob)

OS

DB (detected blob)

AB

¬noneBS

NOA (not obstacle avoidance)

middleBS

sideBS

closeDS

farDS
¬farDS

¬closeDS



CW2: Nested Finite State Machines -
Autonomous Car
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CW2: Nested Finite State Machines -
Autonomous Car
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CW2: Autonomous Car
Implementation of Control Loop
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stateMB = <inactive>; // nested state not active
while (forever) {

if (OS) {
// [OA] out: stop car

} else {
if (noneBS) {

// [SB] out: search blob (refine)
} else {

if (sideBS) {
stateMB = <inactive>; // nested state not active
// [AB] out: turn to adjust facing

} else {
distanceState = ... // use distance to determine state
switch (distanceState) {
case tooclose:

// [RB] out: drive car reverse to reduce distance
break;

case toofar:
// [RB] out: drive car forward to get more distance
break;

case distok:
// [KD] out: stop car in order to keep distance

}
}

}
}

} // while



CW2: Autonomous Car
Implementation of Control Loop

•The structure of the nested FSMs determines the 
priority of services provided by the car.
•The more top-level a transition is in a Nested FSM, 

the higher prior it its service.
• In our example the FSM nesting levels can be 

directly translated into control flow with if-then 
branches.
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Outlook

• Next lecture (that would follow on a module on that topic):

Visual sensing
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