
Decision Making
& Planning

for Cyber-physical Systems

Raimund Kirner
University of Hertfordshire

acknowledgement: includes slides by Mick Walters

MS@CPS virtual training, Hatfield, 15.09.2020

Overview

• CW2 Overview

• Parallel Programming

• Finite State Machines

• Nested Finite State Machines

MS@CPS virtual training, Hatfield, 15.09.2020

CW2: Extended Autonomous Reliable Car

•EARC: Extended autonomous reliable car
•features:

1. Stop if obstacle ahead (IR sensors)
2. Search for binary large object (blob) using

camera
3. Align to found blob
4. Keep distance to found blob (US sensors)

MS@CPS virtual training, Hatfield, 15.09.2020

CW2: Extended Autonomous Reliable Car

MS@CPS virtual training, Hatfield, 15.09.2020

Object to
align to (red

blob)

Visual Sensor
(camera)

Parallel Programming -
CW2 Requirements

•Activity of visual sensing takes relatively
long (~ 1 second)
•Visual sensing takes too long to be included
within main control loop
•Use of separate blob thread which does
•visual sensing
•blob search

•Whenever one blob search done, update
the result to main control loop

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
CW2 Requirements

MS@CPS virtual training, Hatfield, 15.09.2020

thread 0

(main control loop)

thread 1

(blob search)

Nested	Finite	State	Machines	-
Autonomous	Car

1.	12.	2016 6COM1043

OA
SB

RB

KD

FB

not	OS

noneBS

MB	(middle	blob)

OS

DB	(detected	blob)

AB

not
noneBS

NOA	(no	obstacle	avoidance)

middleBS

sideBS

middleBS

closeDS

farDS

not
farDS

not
closeDS blob info

Parallel Programming -
Foundations

•Sequential Computing:
complete one execution before next one
starts

•Parallel Computing:
involves the concurrent or parallel
execution

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Foundations

•Definition: Parallel Computing:

MS@CPS virtual training, Hatfield, 15.09.2020

Two or more computations are
executed simultaneously

Parallel Programming -
Foundations

•Definition: Concurrent Computing:

MS@CPS virtual training, Hatfield, 15.09.2020

The interval between start and stop of
two or more computations overlaps

Parallel Programming -
Example of Parallelism

• Task: bees need to kill visiting scout of
Japanese Giant Hornet before it leaves and
returns with reinforcement to kill the whole
bee hive.
• Algorithm: Using the fact that bees can

withstand higher temperatures than
hornets, the bees form a ball around the
hornet and vibrate in order to produce a
temperature increase inside the ball that
kills the hornet.
• This only works if the bees work in parallel,

i.e., simultaneously (working concurrently is
not sufficient).

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Example of Concurrency without Parallelism

• John works in a customer service, where
he occasionally has to answer the phone.
In the pauses between two calls he reads
a nice book.
• The work in the customer service and the

book reading are two concurrent
processes with overlapping start-end
intervals.
• However, both processes cannot be

executed at the same time (no reading
while talking to a customer, so no
parallelism)

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Foundations

•Difference between processes and threads:
•processes:
• have their own address space
• communication only via inter-process communication

mechanisms
• threads:
• all threads of same process share the address space
• communication directly via objects in shared memory
• synchronisation needed to ensure consistent

communication

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Creating concurrent programs with pthread.h
#include <pthread.h>
#include <assert.h>
void *worker(void *p_thread_dat);

int main (int argc, char **argv) {
int balance = 1000;
pthread_t rt_thread; // thread management data
pthread_attr_t pt_attr; // thread attributes
assert (pthread_create(&(rt_thread), &pt_attr, worker, &balance)==0);
// do something concurrently to second thread:
balance = balance – 300;
// wait for thread to finish
assert (pthread_join(rt_thread, NULL) == 0);
pthread_attr_destroy(&pt_attr); // destroy thread attribute
return EXIT_SUCCESS;

}
MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Creating concurrent programs with pthread.h

void *worker(void *p_thread_dat) {
int *balance = (int *) p_thread_dat;
// do some concurrent update of balance:
*balance = *balance + 100;
return NULL;

}

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Creating concurrent programs with pthread.h

void *worker(void *p_thread_dat) {
int *balance = (int *) p_thread_dat;

// do some concurrent update of balance:
*balance = *balance + 100;
return NULL;

}

MS@CPS virtual training, Hatfield, 15.09.2020

extracting parameter inside
thread function

Parallel Programming -
Race Conditions

• A race condition is a phenomenon where the computed
result of two or more concurrent programs depends on
the timing of the individual programs
• The execution time of the programs or scheduling

decisions of the operating system, for example, can
influence the execution time.
• Due to race conditions the final result can become non-

deterministic.

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Race Conditions

balance = 1000;
void book_in (int amount) { balance = balance + amount; }
void book_out (int amount) { balance = balance - amount; }

MS@CPS virtual training, Hatfield, 15.09.2020

Thread 0:
book_in(100);

Thread 1:
book_out(300);

Q: what will be the final
value of balance?

Parallel Programming -
Race Conditions

MS@CPS virtual training, Hatfield, 15.09.2020

Thread 0: Thread 1:

1000 700

1100 800

1000 1100

700 800

Parallel Programming -
Race Conditions

• The basic problem of race conditions in the example is
non-atomic access of shared data.
• The program parts where concurrent access to shared

data happens is called "critical section"

• To fix this, we have to make sure that "critical section" is
accessed by each program in an atomic way (no in-
between access of the shared data by any other program)

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Semaphore

•One way to make access to "critical sections" atomic, is
the use of semaphores
• A semaphore S is a variable that represents the access

state, being used via two functions:
• wait(S): "allocate resource": if S>0 then decrement S and

program continues, if S=0 then thread blocks and is linked to
the waiting list of S.
• signal(S): "deallocate resource": if S has waiting threads, then

awake first blocked thread to continue, else increments value
of S.

MS@CPS virtual training, Hatfield, 15.09.2020

Parallel Programming -
Race Condition Eliminated

Extending the code with pseudoinstructions (wait/signal):

balance = 1000;
semaphore S=1;
void book_in (int amount) { wait(S); balance = balance + amount; signal(S); }
void book_out (int amount) { wait(S); balance = balance - amount; signal(S); }

MS@CPS virtual training, Hatfield, 15.09.2020

Thread 0:
book_in(100);

Thread 1:
book_out(300);

balance can only be 800

semaphore
pseudo instructions

Parallel Programming -
Implementing semaphores with pthread.h

#include <pthread.h>
int balance;
pthread_mutex_t count_mutex;

void book_in (int amount) {
pthread_mutex_lock(&count_mutex);
balance = balance + amount;
pthread_mutex_unlock(&count_mutex);

}

MS@CPS virtual training, Hatfield, 15.09.2020

Thread 0:
book_in(100);

Thread 1:
book_out(300);

void book_out (int amount) {
pthread_mutex_lock(&count_mutex);
balance = balance - amount;
pthread_mutex_unlock(&count_mutex);

}

Finite State Machines (FSM)

•State means that the machine has some memory
•When we have state, responses can be influenced

by past sensory readings as well as current sensory
readings.
•Theoretical models might have an infinite number

of states
•A finite state machine (FSM) is a system with a finite

number of states and rules of how to transition
from one state to another state.

MS@CPS virtual training, Hatfield, 15.09.2020

Example: Finite State Machines
Light Switch

MS@CPS virtual training, Hatfield, 15.09.2020

On

Off

Button
Switch
Pressed

Button
Switch

Released

Example: Finite State Machines
Garage Door

Scenario:
There is one door
There is one button
There are two limit-switches on the
door mechanism
Rules:
Pressing button opens a closed door
Pressing button closes an opened door
Door stops opening when limit-switch1
is triggered
Door stops closing when limit-switch2 is
triggered

MS@CPS virtual training, Hatfield, 15.09.2020

Example: Finite State Machines
Garage Door

MS@CPS virtual training, Hatfield, 15.09.2020

Door Closed

Button
Pressed

Limit 2
tripped

Door Opening

Door Closing Door Open

Limit 1
tripped

Button
Pressed

start state

Example: Finite State Machines
Garage Door

MS@CPS virtual training, Hatfield, 15.09.2020

Door Closed

Button
Pressed

Limit 2
tripped

Door Opening

Door Closing Door Open

Limit 1
tripped

Button
Pressed

Stopped Closing

Stopped Opening

Button
Pressed

Button
Pressed

Button
Pressed

Button
Pressed

And now add a light

Example: Finite State Machines
Garage Door

MS@CPS virtual training, Hatfield, 15.09.2020

Stopped

Button
Pressed

Limit
tripped

Moving (in direction D)

Off On

Limit 1
tripped

Button
Pressed

5min passed

Door

An Augmented FSM (AFSM)

or

Output: D = not D

Button
Pressed

Light
Add Timer

Add Tiny Amount
of State

FSM Categorisation

•Finite State Analysis
... what we just did
•Finite State Acceptor Diagram

... visualisation of FSM
•Finite State Machine (FSM)

= Finite State Automata (FSA)
•Augmented Finite State Machines (AFSM)

... FSM with extra features such as timers, memory,
etc.

MS@CPS virtual training, Hatfield, 15.09.2020

FSM Implementation

•FSMS can be implemented using general purpose
programming languages,
for example: C, C++, Python, or Java
•However, in industrial sequential control

applications, specialised components like
Programmable Logic Controllers (PLCS) are
commonly used.

MS@CPS virtual training, Hatfield, 15.09.2020

FSM Implementation

MS@CPS virtual training, Hatfield, 15.09.2020

state = initial-state;
forever {
input = Read-Sensors();
state = Update-State(state, input);
output = Set-Output (state);

}

Nested Finite State Machines

• Problem with FSM: complexity of transition graph tends to grow
rather fast
à impractical to model larger systems
• At the same time, FSM make it hard to express priorities in case that

multiple transitions are possible
• Solution: Nested Finite State Machines
• hierarchical transition graph
• states of outer level FSM can contain complete FSMs

MS@CPS virtual training, Hatfield, 15.09.2020

Nested Finite State Machines

• State A is assumed to
have priority over the
other states (triggered
via input a)
• Thus all other states

need to have a direct
transition to state A

MS@CPS virtual training, Hatfield, 15.09.2020

A
a

B

C

D

E

c

a

a

b

b

b

c

b

ac

d

d

c

Nested Finite State Machines

MS@CPS virtual training, Hatfield, 15.09.2020

A

B

C

D

Eb c

a

c

d

d

c

Nested FSM Implementation

MS@CPS virtual training, Hatfield, 15.09.2020

stateP = initial-state-P; // parent state
stateC = initial-state-C; // child state

forever {
inputP = Read-Sensors-P();
stateP = Update-State(stateP, inputP);
inputC = Read-Sensors-C(stateP);
input = inputP + inputC
stateC = Update-State-C(stateC, input);
output = Set-Output (stateC);

}

Formal Notation of FSM

• A finite state machine M is described by the following tuple:

M = {S, L, s, d, F, OF }

• S … set of states
• L … set of inputs
• s … initial state (unique)
• d: S x L à S … state transition function
• F … set of final states (F is subset of S)
• OF … output function

MS@CPS virtual training, Hatfield, 15.09.2020

Formal Notation of FSM

• OF … output function
• There are two definitions of OF commonly in use:
• OF: S à O ... Moore machine
• OF: S x L à O ... Mealy machine

• In a Moore machine, the current state alone determines the
output
• In a Mealy machine, the current state and the current input

together determine the output
• The functional expressiveness of Mealy and Moore machine

is the same. However, a Mealy machine typically uses less
states for the same model than the Moore machine.

MS@CPS virtual training, Hatfield, 15.09.2020

CW2: Nested Finite State Machines -
Autonomous Car

•Set of states S:
•OA … obstacle avoidance (stop car)
•SB … search blob (spin car)
•AB … adjust blob (spin car to center blob)
•KD … keep distance (stop car)
•FB … forward blob (drive forward)
•RB … reverse blob (drive backward)

MS@CPS virtual training, Hatfield, 15.09.2020

CW2: Nested Finite State Machines -
Autonomous Car

•Set of inputs L:
•Obstacle sensor OS:
• os … obstacle detected
• not os … no obstacle detected

•Blob sensor BS
• noneBS … no blob detected
• sideBS … blob detected sideways
• middleBS … blob detected in middle

•Distance sensor DS:
• farDS … far distance
• closeDS … close distance
• okDS … acceptable distance

MS@CPS virtual training, Hatfield, 15.09.2020

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA

SB

RB

KD

FB

¬OS

noneBS

OS

AB

¬noneBS

middleBS

sideBS

sideBS

sideBS

closeDS

farDS
¬farDS

¬closeDS

noneBS

OS

OS

OSOS

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA

SB

RB

KD

FB

¬OS
noneBS

OS

AB

¬noneBS

NOA (not obstacle avoidance)

middleBS

sideBS

sideBS

sideBS

closeDS

farDS

¬closeDS

noneBS
¬farDS

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA
SB

RB

KD

FB

¬OS

noneBS
OS

DB (detected blob)

AB

¬noneBS

NOA (not obstacle avoidance)

middleBS

sideBS

sideBS

sideBS

closeDS

¬farDS
farDS

¬closeDS

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA
SB

RB

KD

FB

¬OS

noneBS

MB (middle blob)

OS

DB (detected blob)

AB

¬noneBS

NOA (not obstacle avoidance)

middleBS

sideBS

closeDS

farDS
¬farDS

¬closeDS

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA

SB

RB

KD

FB

¬OS

noneBS

OS

AB

¬noneBS

middleBS

sideBS

sideBS

sideBS

closeDS

farDS
¬farDS

¬closeDS

noneBS

OS

OS

OSOS

The non-nested
FSM not only is
harder to read, it
is also more likely
to make mistakes
(for the same
reason)
Can you spot
some mistakes
(incomplete
behaviour) in the
non-nested CW2
FSM?

CW2: Nested Finite State Machines -
Autonomous Car

MS@CPS virtual training, Hatfield, 15.09.2020

OA

SB

RB

KD

FB

¬OS

noneBS

OS

AB

¬noneBS

middleBS

sideBS

sideBS

sideBS

closeDS

farDS
¬farDS

¬closeDS

noneBS

OS

OS

OSOS

The non-nested
FSM not only is
harder to read, it
is also more likely
to make mistakes
(for the same
reason)
Can you spot
some mistakes
(incomplete
behaviour) in the
non-nested CW2
FSM?

noneBS

noneBS

CW2: Autonomous Car
Implementation of Control Loop

MS@CPS virtual training, Hatfield, 15.09.2020

stateMB = <inactive>; // nested state not active
while (forever) {

if (OS) {
// [OA] out: stop car

} else {
if (noneBS) {

// [SB] out: search blob (refine)
} else {

if (sideBS) {
stateMB = <inactive>; // nested state not active
// [AB] out: turn to adjust facing

} else {
distanceState = ... // use distance to determine state
switch (distanceState) {
case tooclose:

// [RB] out: drive car reverse to reduce distance
break;

case toofar:
// [RB] out: drive car forward to get more distance
break;

case distok:
// [KD] out: stop car in order to keep distance

}
}

}
}

} // while

CW2: Autonomous Car
Implementation of Control Loop

•The structure of the nested FSMs determines the
priority of services provided by the car.
•The more top-level a transition is in a Nested FSM,

the higher prior it its service.
• In our example the FSM nesting levels can be

directly translated into control flow with if-then
branches.

MS@CPS virtual training, Hatfield, 15.09.2020

Outlook

• Next lecture (that would follow on a module on that topic):

Visual sensing

MS@CPS virtual training, Hatfield, 15.09.2020

