

International Master of Science on Cyber Physical Systems

Identification of the Current and Future Market Requirements D1.2

Project Acronym	MS@CPS	Project Number	598750-EPP-1-2018-1-DE-EPPKA2- CBHE-JP
Date	2019-07-02	Deliverable No.	1.2
Contact Person	Isam Ishaq	Organisation	AQU
Phone	+970 592 907 989	E-Mail isam@itce.alquds.edu	
Version	1.0	Confidentiality level	Public

Version History

Version No.	Date	Change	Editor(s)
0	24/06/2019	Initial outline	Isam Ishaq, Rashid Jayousi, Salah Odeh
1	24/6/2019	Input from working groups integrated	Ezzaldeen Edwan, Ala' Khalifah, Nadia Aloui
2	06/07/2019	Intermediate version	Zaid Alhalhouli
3		Final draft for QC	
4		Final version for delivery to EC, integrated	

Contributors

Name	Organization
Isam Ishaq	AQU
Rashid Jayousi	AQU
Salah Odeh	AQU
Ala' Khalifeh	GJU
Ezzaldeen Edwan	PTC
Nadia Aloui	си
Faiez Gargouri	USF

Disclaimer

This project has been funded with support from the European Commission. This publication reflects the views only of the author(s), and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Table of Contents

٧	ersion	ı History	. 2
C	ontrib	utors	. 2
D	isclain	ner	. 2
Ta	able o	f Contents	. 3
1	Intr	oduction	. 4
	1.1	Scope	. 4
	1.2	Relation to deliverables	. 4
	1.3	Relation to work packages	. 4
	1.4	Terminology	. 4
2	Me	thodology	. 5
3	Wo	rkshops Results and Conclusions	. 6
	3.1	Name Changes	. 6
	3.2	Integration of Courses	. 6
	3.3	Interchange of Core Courses and Electives	. 7
	3.4	Addition/ deletion of courses	. 8
	3.5	Demand for the CPS Program	. 8
4	Cor	nclusion	. 9

1 Introduction

During the last two months, the project has reviewed the existing computer science master courses and structures, as well as, possible standards and guidelines in the different countries where the partners exist. The analysis of the data collected and the exploration of similar programs worldwide have concluded with reaching an initial draft of the MS@CPS curriculum.

As a way forward to this step, partners in Jordan, Palestine, and Tunisia worked on involving the private sector and related university professors on reviewing the draft curriculum, capturing their feedback and establishing a base for further engagement in the development of the program curriculum and course content.

1.1 Scope

The scope of this deliverable is the private sector in partner countries. This deliverable explores their current and future needs from the CPS program and their opinion on the proposed courses found in D1.1. This will help to identify the core course in WP2.

1.2 Relation to deliverables

This deliverable will act as the initial phase of modules identification that will lead to D1.3 which will outline the capacity building needs assessment in partner countries as well D2.1, that will outline the set of modules, courses and related learning outcomes.

1.3 Relation to work packages

This deliverable will act as a milestone for WP2 that is concerned in the development of the program structure and modules. This deliverable will outline the initial requirement that provides basis for the CPS.

1.4 Terminology

CPS: Cyber Physical System

Modules/Courses: These two words are used interchangeably to indicate a unit of the program to be implemented.

Partner Countries: Countries where the program to be implemented (Palestine, Tunisia, Jordan)

Program Countries: EU partners (Germany, Sweden, UK)
Program: The master program (CPS) to be implemented

2 Methodology

In order to get the private sector involvement in the development of the MS@CPSP curriculum, partners invited relevant private sector companies along with key teaching professors for a number of workshops in the three countries. The workshop has four main parts, as the following:

Part one: Presenting the program overview and objectives

A presentation was prepared for this purpose in order to properly introduce MS@CPSP to the participants. Most of the participants are not expected to be so familiar with the CPS concepts and emerging motivations. This part is critical for setting the stage and assuring quality participation in the workshop sessions.

Part two: Reviewing CPS curriculum

For this session it is recommended to distribute the participants in small groups, 4 to 5 people each group. Having some diversity in the background of the participants in every group is important for the discussion quality. Later, the groups are introduced to the proposed CPSP curriculum and asked to discuss the following listed points among themselves. Each group summarizes their discussions and presents it to the other groups. Each group has 30 minutes for discussion and 10 minutes for presentation. To assure capturing the discussions properly, notes & feedback points were taken. The following were the main discussion points:

- 1. What are the main learning outcomes of the CPS?
- 2. What does each course is about? What it mainly covers?
- 3. Which are the most/least relevant courses?
- 4. What changes you would suggest? What need to be added or removed?
- 5. Which courses should be "core /elective courses"?

> Part three: Exploring on CPSP local market requirements

Similar to the last session, the participants are requested to work with their group to discuss the following points and share their conclusions with the reset of the groups.

Discussion points:

- 1. What specialized skills the CPS program graduates will have?
- 2. How attractive would the MS Degree program be to potential students? How many students are expected to apply for the MS@CPSP yearly?
- 3. What is the demand to MS@CPS graduates at national level? What industries are relevant to CPS and related skills? How many graduates the local companies will hire yearly?
- 4. What job titles require CPS and related skills? How many new positions advertised/opened yearly?

Part four: Next steps and wrap-up

At the last part of the workshop, the team reminded the participants of the objectives of the workshop and opened discussion on the following:

- 1. Summarize the main conclusions of the event.
- 2. Explore the possibilities to have further feedback from the companies or participants colleagues.
- 3. Acknowledge the participants' contributions and describe the process used to keep them informed and involved.

3 Workshops Results and Conclusions

This section provides the main conclusions of the workshop discussion. These were grouped according to the previously discussed methododology.

3.1 Name Changes

Table 1 shows the proposed changes in the titles of the courses by each partner.

Table 1: Proposed name changes for the program courses

AQU		си		PTC	
Original	Modified	Original	Modified	Original	Modified
Real-Time Systems	Real-Time Systems Automation	Data Analytics for Engineers	Data Analytics	Data Analytics for Engineers	Data Analytics for CPS
Data Analytics for Engineers	Data Analytics for CPS	Engineers		Image Processing	Image Processing and Computer Vision
Image Processing	Image Processing and Computer Vision			Optimization	Optimization for CPS
Optimization	Optimization for CPS				

3.2 Integration of Courses

Table 2 summarises the suggested integration of courses.

Table 2: Proposed integration of courses

AQU	PT	С
Original course New course	Original course	New course
Intelligent Systems Artificial Intelligence and Robotics and Multiagent Multiagent Systems Systems	Mobile Computing Ubiquitous Computing	Mobile and Ubiquitous Computing

3.3 Interchange of Core Courses and Electives

Table 3 summarises the suggested interchanges between the core courses and the elective ones.

Table 3: Proposed interchange of courses

AQU		си		PTC	
Course name Cha	nange	Original course	New course	Course name	Change
Management col	rom ore to ective rom	Control Systems for Cyber- physical Systems	From elective to core	Knowledge Management Image Processing	From core to Elective From core to Elective
Ele	ective	Sensors , Actuators And	From elective	Optimization	From core to Elective
COI	rom ore to ective	Sensor Networks	to core	Control Systems for Cyber-	From Elective to core
Systems for Ele	rom ective core	Digital Systems Architecture	From elective to core	physical Systems	
Systems		Image Processing (Traitement D'image	From core to elective		

3.4 Addition/ deletion of courses

Table 4 summarises the proposed courses to be added and deleted.

Table 4: Proposed courses' additions and deletions

AQU		си		PTC	
	ange	Course name	Change	Course name	Change
of SCADA el	Added to lective ourses	Innovation manageme nt Knowledge manageme nt Big Data	Added to elective courses Deleted Added to core courses	Basics of SCADA Systems Estimation Theory Smart Grids Introducti on to Robotics	Added to elective courses Added to elective courses Added to elective courses Added to elective courses

3.5 Demand for the CPS Program

Table 5 summarises the demand of the CPS program in each program country as stated by the participants in the workshop.

Table 5: Courses' demands

AQU	PTC
The CPS specialization is new to the companies and the need for it is expected to increase overtime. The participants believe that offering this course as MA can be attractive to students but only if promoted in a proper way. Some students might find it risky to get specialized in CPS giving the low market demand at the moment. Students applying are pioneers who are aware of market and technology change. For the companies, CPS graduate can fit in different but limited positions, within their current structures.	Same as AQU
It is highly recommended to arrange further interviews with companies and use structured questionnaires for reliable conclusions on the demand part.	

4 Conclusion

After reviewing the results of the different workshops conducted at partner countries and analysing it, the findings were summarised in table 6 that shows the updated proposed curriculum by each partner country. The courses shaded in yellow are that agreed upon by all partner countries while the ones that are shaded by red are only proposed by part of the partners. The summary of the proposed core courses is shown in table 6 while the proposed elective courses by each partner are shown in table 7.

Table 6: Proposed core courses by each project country

Colour Codes: The courses shaded in yellow are that agreed upon by all partner countries.

The courses that are shaded by red are only proposed by part of the partners.

AQU	CU	PTC	GJU
Internet Of Things	Internet Of Things	Internet Of Things	Real-Time Systems
Embedded Systems	Digital Systems Architecture	Embedded Systems	Real-Time Systems
Artificial	Intelligent Systems And Robotics	Artificial Intelligence And	Data Analytics for Cyber Security
Intelligence And Multiagent		Multiagent Systems	Optimization
Systems Real Time Systems	Control Systems For Cyber Physical Systems	Real-Time Systems Cloud Computing	Control Systems for
Real-Time Systems Automation	Security And Privacy In Cps	And Semantic Web	Cyber-physical Systems
Cloud Computing And Semantic	Data Analytics	Security & Privacy In CPS	Intelligent Systems and Robotics
Web Security & Privacy	Multiagent Systems Ubiquitous Computing	Data Analytics For Engineers	Multi-agent Systems
In Cps Data Analytics For	Sensors , Actuators And	<mark>Mobile And</mark> Ubiquitous	Internet of Things
Engineers •	Sensor Networks	Computing	Embedded Systems
Ubiquitous Computing		Control Systems For Cyber-Physical	Artificial
Control Systems For Cyber-Physical Systems		<u>Systems</u>	Intelligence and Multi-agent Systems
Systems			Real-Time Systems Automation
			Cloud Computing and Semantic Web
			Security & Privacy in CPS

	Data Analytics for Cyber Security
	Optimization
	Control Systems for Cyber-physical Systems
	Intelligent Systems and Robotics
	Multi-agent Systems
	Internet of Things
	Embedded Systems
	Artificial Intelligence and Multi-agent Systems
	Real-Time Systems Automation
	Cloud Computing and Semantic Web
	Security & Privacy in CPS

and	sors, Actuators Sensor works
Mo	bile Computing
	iability and Risk alysis
Cor Mo	vanced mputational delling and alysis
Sys	tem Theory
Mic	croelectronics
Mic	crocontrollers
Cor	ntrol Theory
Sma Tec	art Health hnology
	nsportation tem Design
Nar Dev	no Systems: vices and Design
Mu	erogeneous Iticore hitectures
Dig Arc	ital Systems hitecture
	cual ality/Augmented ality
	owledge nagement
Ima and Visi	l Computer
Opt CPS	timization for

	Basics of SCADA Systems

Table 7: Proposed elective courses m by each project country

AQU	CU	PTC	GJU
Sensors, Actuators and Sensor	CLOUD COMPUTING AND SEMENTIC WEB	Sensors, Actuators and Sensor	
Networks	MOBILE COMPUTING	Networks	Image Processing
Mobile Computing	RELIABILITY AND RISK ANALYSIS	Estimation Theory	Risk Management
Reliability and Risk Analysis	ADVANCED COMPUTATIONAL MODELING AND ANALYSIS	Reliability and Risk Analysis	Basics of SCADA Systems
Advanced Computational Modelling and	SYSTEMS THEORY (THEORIE DES SYSTEMES)	Advanced Computational Modelling and	Data Analytics for Engineers
Analysis	MICROCONTROLLERS	Analysis	Ubiquitous Computing
System Theory	MICROELECTRONICS	Systems Theory	Computing
Microelectronics	SMART HEALTH TECHNOLOGY	Microelectronics	Mobile Computing
Microcontrollers	TRANSPORTATION SYSTEM DESIGN	Microcontrollers	Reliability and Risk Analysis
Control Theory	NANOSYSTEMS : DEVICES AND DESIGN)	Control Theory	Advanced Computational
Smart Health Technology	HETEROGENOUS MULTICORE ARCHITECTURES	Smart Health Technology	Modelling and Analysis
Transportation System Design	VIRTUAL REALITY /AUGMENTED REALITY	Transportation System Design	Smart Health Technology
Nano Systems: Devices and Design		Nano Systems: Devices and Design	Nano Systems: Devices and Design
Heterogeneous Multicore Architectures		Heterogeneous Multicore Architectures	Digital Systems Architecture
Digital Systems Architecture		Digital Systems Architecture	Virtual Reality/Augmented Reality
Virtual Reality/Augmented Reality		Virtual Reality/Augmented Reality	

Knowledge Management	Knowledge Management	
Image Processing and Computer Vision	Image Processing and Computer Vision	
Optimization for CPS	Optimization for CPS	
Basics of SCADA Systems	Basics of SCADA Systems	
	Smart Grids	
	Introduction to Robotics	

Table 8: Summary of the proposed core courses

Common Core Courses
Internet Of Things
Artificial Intelligence And Multiagent Systems
Control Systems for Cyber-Physical Systems
Security & Privacy In Cps
Data Analytics For Engineers
Embedded Systems (3/4)
Real-Time Systems
Mobile and Ubiquitous Computing
Cloud Computing And Semantic Web
Intelligent Systems And Robotics

Table 9: Proposed elective courses

Elective Courses	
Advanced Computational Modelling and Analysis	
Basics Of SCADA Systems	
Cloud Computing and Semantic Web	
Control Theory	
Data Analytics For Engineers	
Digital Systems Architecture	
Estimation Theory	
Heterogeneous Multicore Architectures	
Image Processing	
Image Processing And Computer Vision	
Introduction To Robotics	
Knowledge Management	
Microcontrollers	
Microelectronics	
Mobile Computing	
Nano Systems: Devices And Design	
Optimization For Cps	
Reliability And Risk Analysis	
Risk Management	
Sensors, Actuators And Sensor Networks	
Smart Grids	
Smart Health Technology	

Systems Theory
Transportation System Design
Ubiquitous Computing
Virtual Reality /Augmented Reality